
Oracle® Rdb for OpenVMS

Table of Contents
Oracle® Rdb for OpenVMS..1

Release Notes...2

November 2003..3

Contents...4

Preface..5

Purpose of This Manual...6

Intended Audience..7

Document Structure..8

Chapter 1Installing Oracle Rdb Release 7.0.7.1..9

1.1 Requirements...10

1.2 Invoking VMSINSTAL ..11

1.3 Stopping the Installation..12

1.4 After Installing Oracle Rdb...13

1.5 Maximum OpenVMS Version Check Added...14

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.0.7.1..15

2.1 Software Errors Fixed That Apply to All Interfaces...16
2.1.1 Recovery of Empty Optimized AIJ Does Not Update the Sequence Number.............................16
2.1.2 Left Outer Join Query With OR Predicate Returns Wrong Results...17
2.1.3 Left Outer Join Query With OR Predicate Returns Wrong Results...18
2.1.4 Query Bugchecks When IN Clause Contains More Than Two DBKEYS...................................19
2.1.5 Processes Loop at IPL2 When VLM Feature Used..20
2.1.6 DBR Bugchecks at DBR$DDTM_RESOLVE + 000003F4..20
2.1.7 Replication Option and LogMiner Features Active at the Same Time...21
2.1.8 RMU /UNLOAD /AFTER_JOURNAL Created .RRD Content Clarification.............................21
2.1.9 Page Locks Not Released When LOCKING IS PAGE LEVEL..21
2.1.10 Looping or Bugchecks in DIO$FETCH_DBKEY for SORTED RANKED Indexes................22
2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate...23
2.1.12 Query With EXISTS Clause and COMPUTED BY Column Returns Wrong Results...............23
2.1.13 Bugcheck in DIO$FREE_CURRENT_LOCK for Sorted Ranked Indexes...............................27
2.1.14 Ranked Index Overflow Node Corruption on Insert...28
2.1.15 Illegal Page Count Error in the Dynamic Optimizer..29
2.1.16 Bugcheck During Create Index with Mapping Values...30
2.1.17 Error %RDMS−E−NOSOL_FOUND in Full Outer Join Query..30

Oracle® Rdb for OpenVMS

i

Table of Contents
2.1 Software Errors Fixed That Apply to All Interfaces

2.1.18 TRUNCATE TABLE and RMU /REPAIR Corruption Corrected...32
2.1.19 UNION Query With Two Left Outer Joins in First Leg Returns Wrong Results......................33
2.1.20 Logical Area Record Erasure Count Not Updated for Cached Rows...36
2.1.21 Query With Sum Function of Two Select Counts Bugchecks..36
2.1.22 Left Outer Join Query With CONCAT Function Returns Wrong Results.................................37
2.1.23 RCS Bugchecks at DIOCCH$UNMARK_GRIC_ENT...38
2.1.24 Wrong Sort Order for Query with Aggregate, Group By, Order By..39
2.1.25 Left Outer Join Query with SUBSTRING and CHAR_LENGTH Bugchecks..........................40
2.1.26 Join Query with GROUP_BY/ORDER_BY Returns Wrong Order...41
2.1.27 Query Joining Two Derived Tables of a View with UNION Overflows the Stack...................42
2.1.28 Query with Shared Expression in Two Predicates Returns Wrong Results...............................43
2.1.29 Wrong Index Retrieval is Selected in Query with GTR Predicate...45
2.1.30 Memory Corruption When Using Explicit 2PC...46
2.1.31 Query Applying Zero Shortcut Returns Wrong Results...46

2.2 SQL Errors Fixed...48
2.2.1 Unexpected DATEEQLILL Error During IMPORT With CREATE INDEX or CREATE
 STORAGE MAP..48
2.2.2 Incorrect Unit for the DETECTED ASYNC PREFETCH THRESHOLD Option......................48
2.2.3 DECLARE LOCAL TEMPORARY TABLE Limited to 10 Tables Per Session........................49
2.2.4 IVP or Other Failure with Dynamic SQL if SQL$INT is Installed /RESIDENT........................49
2.2.5 Bugcheck at PSIINDEX$FIND_ENTS_EXACT + 54..49
2.2.6 Multistatement Procedures Used with Connections Resulted in
 %RDB−E−OBSOLETE_METADA Error Message..50
2.2.7 IMPORT May Generate ACCVIO Exception During Import of a Module.................................50
2.2.8 Unexpected ACCVIO When Reporting Incompatible Character Set Assignments.....................50
2.2.9 SQL−F−NODBFILE When SQL Modules are Compiled With /CONNECT..............................51
2.2.10 GET DIAGNOSTICS Keyword CONNECTION_NAME Returned Incorrect Value...............51
2.2.11 Errors Not Reported by SQL..52
2.2.12 Variable Updated Though No Rows Found..52
2.2.13 Partitioning Clause Not Working in Embedded SQL...53

2.3 RDO and RDML Errors Fixed..56
2.3.1 RDML /DATE_TYPE Qualifier Default is Now NOEMPTY_RECORDS.................................56

2.4 Oracle RMU Errors Fixed...57
2.4.1 RMU /COLLECT May Default to a READ WRITE Transaction..57
2.4.2 RMU/VERIFY/CONSTRAINTS Problems With Named Tables And Constraints.....................58
2.4.3 RMU Unload Incorrectly Using DBKEY SCOPE IS ATTACH..60

2.5 LogMiner Errors Fixed..61
2.5.1 LogMiner Elimination of Processing Unneeded AIJ Files...61
2.5.2 /TRANSACTION_TYPE Qualifier for RMU /UNLOAD /AFTER_JOURNAL........................61

2.6 RMU Show Statistics Errors Fixed...63
2.6.1 RMU /SHOW STATISTICS Writes Invalid Configuration File..63

Oracle® Rdb for OpenVMS

ii

Table of Contents
2.7 Hot Standby Errors Fixed..64

2.7.1 Starting LRS on Master Database Caused Shutdown...64

Chapter 3Enhancements..65

3.1 Enhancements Provided in Oracle Rdb Release 7.0.7.1..66
3.1.1 RDM$BIND_SNAP_QUIET_POINT Logical No Longer Used...66
3.1.2 Determining Which Oracle Rdb Options Are Installed..66
3.1.3 New Procedure RDB$IMAGE_VERSIONS.COM..67

Chapter 4Documentation Corrections..68

4.1 Documentation Corrections...69
4.1.1 Waiting for Client Lock Message...69
4.1.2 Clarification of PREPARE Statement Behavior...70
4.1.3 SQL EXPORT Does Not Save Some Database Attributes...70
4.1.4 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter...................71
4.1.5 New Request Options for RDO, RDBPRE and RDB$INTERPRET...71
4.1.6 Missing Descriptions of RDB$FLAGS from HELP File...73
4.1.7 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database....75
4.1.8 Clarification of SET FLAGS Option DATABASE_PARAMETERS...75
4.1.9 Additional Information About Detached Processes..76
4.1.10 The Halloween Problem...77
4.1.11 RDM$BIND_MAX_DBR_COUNT Documentation Clarification...79
4.1.12 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector Clarification...................................79
4.1.13 Location of Host Source File Generated by the SQL Precompilers...82
4.1.14 Suggestion to Increase GH_RSRVPGCNT Removed..83
4.1.15 Clarification of the DDLDONOTMIX Error Message...83
4.1.16 Compressed Sorted Index Entry Stored in Incorrect Storage Area..84
4.1.17 Partition Clause is Optional on CREATE STORAGE MAP...86
4.1.18 Oracle Rdb Logical Names...86
4.1.19 Documentation Error in Oracle Rdb Guide to Database Performance and Tuning....................87
4.1.20 SET FLAGS Option IGNORE_OUTLINE Not Available...87
4.1.21 SET FLAGS Option INTERNALS Not Described..87
4.1.22 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS..................................88
4.1.23 Documentation for Defining the RDBSERVER Logical Name...88
4.1.24 Undocumented SET Commands and Language Options..89

4.1.24.1 QUIET COMMIT Option...89
4.1.24.2 COMPOUND TRANSACTIONS Option...90

4.1.25 Undocumented Size Limit for Indexes with Keys Using Collating Sequences..........................91
4.1.26 Changes to RMU/REPLICATE AFTER/BUFFERS Command..92
4.1.27 Change in the Way RDMAIJ Server is Set Up in UCX...92
4.1.28 CREATE INDEX Supported for Hot Standby...93
4.1.29 Dynamic OR Optimization Formats...93

Chapter 5Known Problems and Restrictions...94

Oracle® Rdb for OpenVMS

iii

Table of Contents
5.1 Oracle Rdb Considerations..95

5.1.1 AIJ Log Server Process May Loop Or Bugcheck...95
5.1.2 Optimization of Check Constraints...95
5.1.3 Dynamic Optimization Estimation Incorrect for Ranked Indices...98
5.1.4 Running Rdb Applications With the VMS Heap Analyzer..98
5.1.5 RMU/RECOVER/AREA Needs Area List...99
5.1.6 PAGE TRANSFER VIA MEMORY Disabled..99
5.1.7 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors..99
5.1.8 Behavior Change in 'With System Logical_Name Translation' Clause.....................................100
5.1.9 Carry−Over Locks and NOWAIT Transactions Clarification..101
5.1.10 Strict Partitioning May Scan Extra Partitions...101
5.1.11 Exclusive Access Transactions May Deadlock With RCS Process..102
5.1.12 Oracle Rdb and OpenVMS ODS−5 Volumes..102
5.1.13 Clarification of the USER Impersonation Provided by the Oracle Rdb Server........................103
5.1.14 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition Map.....................103
5.1.15 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE
 When Attached by PATHNAME...104
5.1.16 Application and Oracle Rdb Both Using SYS$HIBER..104
5.1.17 IMPORT Unable to Import Some View Definitions..105
5.1.18 AIJSERVER Privileges..106
5.1.19 Lock Remastering and Hot Standby...107
5.1.20 RDB_SETUP Privilege Error...107
5.1.21 Starting Hot Standby on Restored Standby Database May Corrupt Database.........................107
5.1.22 Restriction on Compound Statement Nesting Levels...108
5.1.23 Back Up All AIJ Journals Before Performing a Hot Standby Switchover Operation..............109
5.1.24 Concurrent DDL and Read−Only Transaction on the Same Table Not Compatible................109
5.1.25 Oracle Rdb and the SRM_CHECK Tool..110
5.1.26 Oracle RMU Checksum_Verification Qualifier...110
5.1.27 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL (Alpha)..................111
5.1.28 Restriction on Using /NOONLINE with Hot Standby...111
5.1.29 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error.........112
5.1.30 DBAPack for Windows 3.1 is Deprecated...112
5.1.31 Determining Mode for SQL Non−Stored Procedures..112
5.1.32 DROP TABLE CASCADE Results in %RDB−E−NO_META_UPDATE Error....................114
5.1.33 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL...115
5.1.34 Interruptions Possible when Using Multistatement or Stored Procedures................................116
5.1.35 Row Cache Not Allowed on Standby Database While Hot Standby Replication Is Active.....117
5.1.36 Hot Standby Replication Waits when Starting if Read−Only Transactions Running..............117
5.1.37 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle Functions
 Script...117
5.1.38 DEC C and Use of the /STANDARD Switch...118
5.1.39 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb
 Sorts..118
5.1.40 Performance Monitor Column Mislabeled...120
5.1.41 Restriction Using Backup Files Created Later than Oracle Rdb Release 7.0.1........................120
5.1.42 RMU Backup Operations and Tape Drive Types...120
5.1.43 Use of Oracle Rdb from Shared Images...121
5.1.44 Restriction Added for CREATE STORAGE MAP on Table with Data..................................121

Oracle® Rdb for OpenVMS

iv

Table of Contents
5.1 Oracle Rdb Considerations

5.1.45 Oracle Rdb Workload Collection Can Stop Hot Standby Replication.....................................122
5.1.46 RMU Convert Command and System Tables...123
5.1.47 Converting Single−File Databases..123
5.1.48 Restriction when Adding Storage Areas with Users Attached to Database.............................124
5.1.49 Support for Single−File Databases to be Dropped in a Future Release....................................124
5.1.50 DECdtm Log Stalls...124
5.1.51 Cannot Run Distributed Transactions on Systems with DECnet/OSI and OpenVMS
 Alpha Version 6.1 or OpenVMS VAX Version 6.0...125
5.1.52 Multiblock Page Writes May Require Restore Operation..126
5.1.53 Replication Option Copy Processes Do Not Process Database Pages Ahead of an
 Application..126
5.1.54 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area.....127
5.1.55 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE.....................................127
5.1.56 Different Methods of Limiting Returned Rows from Queries..127
5.1.57 Suggestions for Optimal Usage of the SHARED DATA DEFINITION Clause for Parallel
 Index Creation...129
5.1.58 Side Effect when Calling Stored Routines..130
5.1.59 Considerations when Using Holdable Cursors...131
5.1.60 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for PL/I in Oracle
 Rdb Release 5.0 or Higher..132
5.1.61 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations Incorrectly.............132
5.1.62 RMU Parallel Backup Command Not Supported for Use with SLS..133

5.2 Oracle CDD/Repository Restrictions..134
5.2.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features...134
5.2.2 Multischema Databases and CDD/Repository..135
5.2.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU Privileges Access
 Control Lists...136

5.2.3.1 Installing the Corrected CDDSHR Images...137
5.2.3.2 CDD Conversion Procedure..138

Oracle® Rdb for OpenVMS

v

Oracle® Rdb for OpenVMS

Oracle® Rdb for OpenVMS 1

Release Notes
Release 7.0.7.1

Release Notes 2

November 2003
Oracle Rdb Release Notes, Release 7.0.7.1 for OpenVMS

Copyright © 1984, 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent and other intellectual and industrial property laws. Reverse engineering,
disassembly or decompilation of the Programs, except to the extent required to obtain interoperability with
other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error−free. Except as may be expressly permitted in your license agreement for these Programs,
no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the Programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227−19, Commercial Computer
Software − Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail−safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Hot Standby, LogMiner for Rdb, Oracle CDD/Repository, Oracle
CODASYL DBMS, Oracle Expert, Oracle Rdb, Oracle RMU, Oracle RMUwin, Oracle SQL/Services, Oracle
Trace, and Rdb7 are trademark or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

November 2003 3

Contents

Contents 4

Preface

Preface 5

Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.0.7.1. The notes describe changed and enhanced
features; upgrade and compatibility information; new and existing software problems and restrictions; and
software and documentation corrections. These release notes cover both Oracle Rdb for OpenVMS Alpha and
Oracle Rdb for OpenVMS VAX, which are referred to by their abbreviated name, Oracle Rdb.

Purpose of This Manual 6

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or use
Oracle Rdb Release 7.0.7.1.

Intended Audience 7

Document Structure
This manual consists of five chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.0.7.1.

Chapter 2 Describes software errors corrected in Oracle Rdb Release 7.0.7.1.

Chapter 3 Describes enhancements introduced in Oracle Rdb Release 7.0.7.1.

Chapter 4 Provides information not currently available in the Oracle Rdb documentation set.

Chapter 5 Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.0.7.1.

Document Structure 8

Chapter 1
Installing Oracle Rdb Release 7.0.7.1
This software update is installed using the standard OpenVMS Install Utility.

NOTE

Beginning with Release 7.0.6.2 of Oracle Rdb, all new Oracle Rdb kits released are full
kits. Oracle will no longer ship partial kits (known as ECOs in the past). Therefore, there is
no need to install any prior release of Oracle Rdb when installing new Rdb kits.

Chapter 1Installing Oracle Rdb Release 7.0.7.1 9

1.1 Requirements
The following conditions must be met in order to install this software update:

Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP(70).COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown all versions of Oracle Rdb on all nodes in the
cluster before proceeding.

•

The installation requires approximately 130,000 free blocks on your system disk for OpenVMS VAX
systems; 240,000 blocks for OpenVMS Alpha systems.

•

1.1 Requirements 10

1.2 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure:

@SYS$UPDATE:VMSINSTAL variant−name device−name OPTIONS N

variant−name

The variant names for the software update for Oracle Rdb Release 7.0.7.1 are:

RDBSE1G070 for Oracle Rdb for OpenVMS VAX standard version.•
RDBASE1G070 for Oracle Rdb for OpenVMS Alpha standard version.•
RDBMVE1G070 for Oracle Rdb for OpenVMS VAX multiversion.•
RDBAMVE1G070 for Oracle Rdb for OpenVMS Alpha multiversion.•

device−name

Use the name of the device on which the media is mounted.

If the device is a disk drive, such as a CD−ROM reader, you also need to specify a directory. For
CD−ROM distribution, the directory name is the same as the variant name. For example:

DKA400:[RDBAMVE1G070.KIT]

•

If the device is a magnetic tape drive, you need to specify only the device name. For example:

MTA0:

•

OPTIONS N

This parameter prints the release notes.

The following example shows how to start the installation of the Alpha multiversion kit on device MTA0: and
print the release notes:

$ @SYS$UPDATE:VMSINSTAL RDBAMVE1G070 MTA0: OPTIONS N

1.2 Invoking VMSINSTAL 11

1.3 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the
copy of Oracle Rdb installed will probably not be usable.

1.3 Stopping the Installation 12

1.4 After Installing Oracle Rdb
This update provides a new Oracle Rdb Oracle TRACE facility definition. Any Oracle TRACE selections that
reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition, "RDBVMSV7.0−71".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPC$FACILITY.TLB. To be able to collect Oracle Rdb event−data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.0−71 −
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

1.

Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

2.

Note that if you are installing the multiversion variant of Oracle Rdb, the process executing the INSERT
DEFINITION command must use the version of Oracle Rdb that matches the version used to create the
Oracle TRACE administration database or the INSERT DEFINITION command will fail.

1.4 After Installing Oracle Rdb 13

1.5 Maximum OpenVMS Version Check Added
As of Oracle Rdb Release 7.0.1.5, a maximum OpenVMS version check has been added to the product.
Oracle Rdb has always had a minimum OpenVMS version requirement. With 7.0.1.5 and for all future Oracle
Rdb releases, we have expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve product quality.

OpenVMS Version 7.3−x is the maximum supported version of OpenVMS.

As of Oracle Rdb Release 7.0.3, the Alpha EV6 processor is supported. As of Oracle Rdb Release 7.0.5, the
Alpha EV67 processor is supported. As of Oracle Rdb Release 7.0.6, the Alpha Wildfire processor is
supported (see http://metalink.oracle.com for specifics on which Wildfire configurations are supported). As of
Oracle Rdb Release 7.0.6.2, the Alpha EV68 processor is supported. As of Oracle Rdb Release 7.0.7, the
Alpha EV7 processor is supported.

The check for the OpenVMS operating system version and supported hardware platforms is performed both at
installation time and at runtime. If either a non−certified version of OpenVMS or hardware platform is
detected during installation, the installation will abort. If a non−certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

1.5 Maximum OpenVMS Version Check Added 14

Chapter 2
Software Errors Fixed in Oracle Rdb Release 7.0.7.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.0.7.1.

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.0.7.1 15

2.1 Software Errors Fixed That Apply to All Interfaces

2.1.1 Recovery of Empty Optimized AIJ Does Not Update the
Sequence Number

Bug 2581948

The recovery of an empty optimized AIJ does not update the next AIJ sequence number. This will prevent the
recovery of the next AIJ as shown below. An optimized AIJ file can be empty if the corresponding AIJ file
contains only rolled−back transactions. See the following example.

$ sql$
SQL> attach 'filename opt_aij';
SQL> insert into t1 values (1);
1 row inserted
SQL> rollback;
SQL> exit
$ RMU /BACKUP /AFTER OPT_AIJ OPT_AIJ_BCK1

− Note that opt_aij_bck1 contains a single rolled−back transaction

$ sql$
SQL> attach 'filename opt_aij';
SQL> insert into t1 values (2);
1 row inserted
SQL> commit;
SQL> exit
$ RMU /BACKUP /AFTER OPT_AIJ OPT_AIJ_BCK2

! opt_aij_bck2 contains a single committed transaction

$ RMU /OPTIMIZE /AFTER OPT_AIJ_BCK1 OPT_AIJ_OPT1
$ RMU /OPTIMIZE /AFTER OPT_AIJ_BCK2 OPT_AIJ_OPT2
$ RMU /RESTORE /NOCDD OPT_AIJ

! Recovering the empty Optimized AIJ file opt_aij_opt1

$ RMU /RECOVER /LOG OPT_AIJ_OPT1.OAIJ
%RMU−I−LOGRECDB, recovering database file 111DUA4:[VIGIER.OPTAIJ.DB]OPT_AIJ.RDB;1
%RMU−I−LOGOPNAIJ, opened journal file RAID1:[VIGIER.OPTAIJ.DB]OPT_AIJ_OPT1.OAIJ;1 at 8−JAN−2003 10:20:54.13
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed
%RMU−I−LOGRECOVR, 0 transactions committed
%RMU−I−LOGRECOVR, 0 transactions rolled back
%RMU−I−LOGRECOVR, 0 transactions ignored
%RMU−I−AIJNOACTIVE, there are no active transactions
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJNXTSEQ, to continue this AIJ file recovery, the sequence number needed will be 0
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−W−NOTRANAPP, no transactions in this journal were applied
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number needed will be 0
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled

− Note that the next AIJ Sequence number has been left as 0

− Recovering the second Optimized AIJ file opt_aij_opt2

2.1 Software Errors Fixed That Apply to All Interfaces 16

$ RMU /RECOVER /LOG OPT_AIJ_OPT2.OAIJ
%RMU−I−LOGRECDB, recovering database file 111DUA4:[VIGIER.OPTAIJ.DB]OPT_AIJ.RDB;1
%RMU−F−AIJNORCVR, recovery of this journal must start with sequence 0
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 8−JAN−2003 10:23:38.32

The recovery fails since it does not have the expected AIJ sequence number.

A workaround is to put all the optimized AIJ files in the same command line.

$ RMU /RECOVER /LOG OPT_AIJ_OPT1.OAIJ,OPT_AIJ_OPT2.OAIJ

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.2 Left Outer Join Query With OR Predicate Returns Wrong
Results

Bugs 2836144 and 1837522

The following left outer join query with an OR predicate, having an equality predicate of constant values on
the left side, and another equality predicate of a column and a constant value on the right side, returns the
wrong result. It should find 274 rows but it finds only one row.

set flags 'strategy,detail';
select count(*) from
 job_history as c1
 left outer join
 employees as c2 on (c1.employee_id = c2.employee_id)
 where
 1=1 OR c1.job_code = 'JNTR';
Tables:
 0 = JOB_HISTORY
 1 = EMPLOYEES
Aggregate: 0:COUNT (*)
Conjunct: 0.JOB_CODE = 'JNTR'
Conjunct: 0.JOB_CODE = 'JNTR'
Match (Left Outer Join)
 Outer loop
 Conjunct: (1 = 1) OR (0.JOB_CODE = 'JNTR')
 Get Retrieval by index of relation 0:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]

 1
1 row selected

This problem was partially fixed in Bug 1837522 where the equality contains one column and one constant.

As a workaround, the query works if the left and right side of the OR predicate is swapped as in the following
example.

select count(*) from
 job_history as c1
 left outer join

Oracle® Rdb for OpenVMS

2.1.2 Left Outer Join Query With OR Predicate Returns Wrong Results 17

 employees as c2 on (c1.employee_id = c2.employee_id)
 where
 c1.job_code = 'JNTR' OR 1=1;
Tables:
 0 = JOB_HISTORY
 1 = EMPLOYEES
Aggregate: 0:COUNT (*)
Conjunct: 0.JOB_CODE = 'JNTR'
Conjunct: 0.JOB_CODE = 'JNTR'
Match (Left Outer Join)
 Outer loop
 Conjunct: (0.JOB_CODE = 'JNTR') OR (1 = 1)
 Get Retrieval by index of relation 0:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]

 274
1 row selected

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.3 Left Outer Join Query With OR Predicate Returns Wrong
Results

Bugs 2845172, 2836144 and 1837522

The following left outer join query with an OR predicate, having an equality predicate of constant values on
the left side, and another equality predicate of a column and a constant value on the right side, returns the
wrong result. It should find 274 rows, but it finds only 1 row.

set flags 'strategy,detail';
select
 t1.home_area_cd,t1.home_ph_num,
 t1.bus_area_cd,t1.bus_ph_num
 from
 t1 left outer join t2 on t1.acct_num = t2.acct_num
 where
 (t1.home_area_cd=999) OR
 (t1.bus_area_cd=310 and t1.bus_ph_num=5355400) ;
Tables:
 0 = T1
 1 = T2
Conjunct: 0.HOME_AREA_CD = 999 <== Note1 : MISSING OR predicate
Conjunct: (0.BUS_AREA_CD = 310) AND (0.BUS_PH_NUM = 5355400)
Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 OR index retrieval
 Conjunct: 0.HOME_AREA_CD = 999
 Get Retrieval by index of relation 0:T1
 Index name T1_IDX1 [1:1]
 Keys: 0.HOME_AREA_CD = 999
 Conjunct: NOT (0.HOME_AREA_CD = 999) AND (0.BUS_AREA_CD = 310) AND (
 0.BUS_PH_NUM = 5355400)
 Get Retrieval by index of relation 0:T1
 Index name T1_IDX2 [2:2]
 Keys: (0.BUS_AREA_CD = 310) AND (0.BUS_PH_NUM = 5355400)

Oracle® Rdb for OpenVMS

2.1.3 Left Outer Join Query With OR Predicate Returns Wrong Results 18

 Cross block entry 2
 Conjunct: 0.ACCT_NUM = 1.ACCT_NUM
 Get Retrieval sequentially of relation 1:T2
0 rows selected

Note1: Notice that the OR predicate is missing between the two conjuncts.

This problem is similar to the query in Bug 2836144, but the only difference is that this query uses static OR
retrieval strategy.

As a workaround, the query works if the left and right side of the OR predicate is swapped in this example but
it won't do the trick with the customer's original query where the OR predicate has an additional equality
predicate. For example:

select
 t1.home_area_cd,t1.home_ph_num,
 t1.bus_area_cd,t1.bus_ph_num
 from
 t1 left outer join t2 on t1.acct_num = t2.acct_num
 where
 (t1.home_area_cd=999 and t1.home_ph_num=999) or
 (t1.bus_area_cd=310 and t1.bus_ph_num=5355400);

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.4 Query Bugchecks When IN Clause Contains More Than
Two DBKEYS

Bug 2742592

The following query bugchecks when the IN clause contains more than 2 dbkeys.

create table prova (i integer, c char(32));
insert into prova values (1,'one');
insert into prova values (2,'two');
insert into prova values (3,'three');

select * from prova where dbkey in (:dbk1,:dbk2,:dbk3);
declare :dbk1 char(8);
declare :dbk2 char(8);
declare :dbk3 char(8);
declare c1 table cursor for select dbkey from prova;
open c1;
fetch c1 into :dbk1;
fetch c1 into :dbk2;
fetch c1 into :dbk3;
close c1;

The following query works.

select * from prova where dbkey in (:dbk1,:dbk2);
OR index retrieval
 Conjunct Firstn Get Retrieval by DBK of relation PROVA
 Conjunct Firstn Get Retrieval by DBK of relation PROVA
 I C

Oracle® Rdb for OpenVMS

2.1.4 Query Bugchecks When IN Clause Contains More Than Two DBKEYS 19

 1 one
 2 two
2 rows selected

However, with more than 2 dbkeys in the IN clause, it bugchecks.

select * from prova where dbkey in (:dbk1,:dbk2,:dbk3);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USD04:[ONG]RDSBUGCHK.DMP;

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.5 Processes Loop at IPL2 When VLM Feature Used

Bug 2859466

It was possible for processes to become stuck in a loop in the Oracle Rdb image RDMPRV.EXE at VMS
interrupt priority level (IPL) 2. Because the process was looping at an elevated IPL, it was not possible to
delete the process. A system reboot was necessary to get rid of the looping processes. This problem only
occurred when the Very Large Memory (VLM) feature was utilized for database shared memory or row
caches.

Often the initial symptom of this problem was unresolved database stalls. Because the looping processes often
held database locks, and since the looping prevented the processes from responding to blocking AST requests,
other database processes would stall waiting for the looping processes to release their locks. Analysis of the
processes not responding to blocking AST requests revealed that those processes were looping in the
RDMPRV.EXE image.

To avoid this problem, disable the VLM feature for database shared memory or row caches.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.6 DBR Bugchecks at DBR$DDTM_RESOLVE + 000003F4

The database recovery process (DBR) would sometimes bugcheck with the following failure:

***** Exception at 0005EC94 : DBR$DDTM_RESOLVE + 000003F4
%COSI−F−BUGCHECK, internal consistency failure

This bugcheck would occur when the OpenVMS system service $GETDTIW would return an undocumented
transaction state value (11, or "IN_DOUBT") for an unresolved transaction. The DBR would fail since it was
not expecting that transaction state.

Subsequent attempts to open or attach to the database would usually succeed. The second query using the
$GETDTIW would typically return an expected state value.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.1.5 Processes Loop at IPL2 When VLM Feature Used 20

2.1.7 Replication Option and LogMiner Features Active at the
Same Time

Bug 2903092

When both the Replication Option and LogMiner(TM) features are enabled, it is possible for the "pre−delete"
record contents stored in the after−image journal file for the LogMiner to contain incorrect contents. This
problem may be indicated by errors from the RMU /UNLOAD /AFTER_JOURNAL command such as the
following example:

%RMU−W−RECVERDIF, Record at DBKEY 819:20615:8 in table
 "FOOBAR" version 262 does not match current version.

This problem was caused by an incorrect buffer being used when writing the "pre−delete" record contents for
the LogMiner. This buffer was also used by the Replication Option code path and the existing saved content
was lost.

This problem has been corrected in Oracle Rdb Release 7.0.7.1. A different buffer is now used to save
"pre−delete" record content data.

2.1.8 RMU /UNLOAD /AFTER_JOURNAL Created .RRD Content
Clarification

Bug 2916639

An optional "RECORD_DEFINITION" keyword can be used with the RMU /UNLOAD /AFTER_JOURNAL
command to create a template .RRD (record definition) file that can be used to load a transaction table. The
TABLE_DEFINITION keyword can also be used to create a template SQL procedure to create such a
transaction table.

The behaviour of the RMU /UNLOAD /AFTER_JOURNAL command when used with these keywords is to
append the string "RDB_LM_" to the table name to create the record name in the .RRD or .SQL file.

However, when the existing table name exceeds 24 characters in length, the resultant name for the transaction
table in the .SQL or .RRD file exceeds 31 characters and is no longer a valid table name in an Rdb database.
In these cases, a decision about the table name to be used must be made and the .RRD or .SQL file must be
manually modified.

Oracle Rdb engineering is considering alternatives for future releases to help reduce the impact of this
behaviour.

2.1.9 Page Locks Not Released When LOCKING IS PAGE LEVEL

Bug 2959599

When the LOCKING IS PAGE LEVEL storage area attribute was enabled, it was possible for a process to
obtain a page lock and not release it when a blocking AST was delivered by another process. Other processes
would stall waiting for the page until the owning process removed the page from its buffer pool. The process
could continue to hold the lock even after committing its transaction.

Oracle® Rdb for OpenVMS

2.1.7 Replication Option and LogMiner Features Active at the Same Time 21

When this problem occurred, the output from the RMU /SHOW LOCKS /MODE=CULPRIT would be
similar to the following:

==
SHOW LOCKS/LOCK/MODE=CULPRIT Information
==

−−
Resource: page 4443

 ProcessID Process Name Lock ID System ID Requested Granted
 −−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−
Blocker: 2541851A DKOM_TSG_004... 5300BA60 0001002A PW
Waiting: 25418513 DKOM_BRZ_PAS... 48001A32 0001002A PW NL

The OpenVMS system analyzer (SDA) utility SHOW LOCK command would show output similar to the
following:

Lock id: 5300BA60 PID: 0061011A Flags: VALBLK CONVERT NOQUEUE
Par. id: 21010D65 SUBLCKs: 0 SYNCSTS SYSTEM PROTECT
LKB: FFFFFFFF.7E352E50 BLKAST: 00000000
Priority: 0000

Granted at PW 00000000−FFFFFFFF

Resource: 0000115B 00000050 P...[... Status: PROTCT
 Length 08 00000000 00000000
 Exec. mode 00000000 00000000
 System 00000000 00000000

Local copy

Note that in the above output, the blocking AST address (BLKAST) is zero and the lock is granted in PW
mode.

To avoid this problem, set the storage area to LOCKING IS ROW LEVEL.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.10 Looping or Bugchecks in DIO$FETCH_DBKEY for
SORTED RANKED Indexes

Bugs 2936413 and 3017913

If a query specified a range of key values that fell between any existing key values in a SORTED RANKED
index and the dynamic optimizer was used, it was possible to experience looping or bugchecks.

If a query specified a range of key values such that the range appeared in upper level index nodes but not in
lower level index nodes, it was possible that Oracle Rdb could enter an infinite loop in the routines
PSII2FINDSEPINTERVAL2 and PSII2EXPANDNODESEPS2.

If a query specified an empty range on an index, it was possible that bugchecks could occur such as:

SYSTEM−F−ACCVIO, access violation

Oracle® Rdb for OpenVMS

2.1.10 Looping or Bugchecks in DIO$FETCH_DBKEY for SORTED RANKED Indexes 22

Exception occurred at DIO$FETCH_DBKEY + 00000200
Called from PSII2FINDSEPINTERVAL2 + 0000015C
Called from PSII2ESTIMATECARD2 + 0000008C
Called from RDMS$$NDX_ESTIM + 000003B0

An empty range is one such as that specified by the condition WHERE MY_FIELD > 'A' AND MY_FIELD <
'B'. If MY_FIELD were a CHAR(1) field, it would be impossible to find a key value to match the specified
condition.

In some cases, Rdb would fail to detect that the range was empty and would try and persue index estimation
for the dynamic optimizer. This could result in Rdb attempting to read an erroneous dbkey, or to repeatedly
re−read the same dbkey as the next index node.

Oracle Rdb now correctly detects an empty range and returns an estimate of zero rows for the index
estimation.

The bugcheck problem can be avoided by specifying ranges that include at least one possible key value. This
key value need not exist in the database.

The looping problem can be avoided by rebuilding the offending index or by disabling the dynamic optimizer.

This problem only occurs on indexes of TYPE IS SORTED RANKED. So another workaround is to use
indexes of TYPE IS HASHED or TYPE IS SORTED if appropriate.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate

It was possible for the RMU/CLOSE/WAIT command to hang if the database had LOG SERVER IS
AUTOMATIC specified and a user attempted to attach to the database immediately after the RMU/CLOSE
command was issued. This problem was introduced in Oracle Rdb Release 7.0.7.

The RMU/CLOSE/WAIT command will ensure that database recovery processes (DBRs) are executed before
closing the database. In Release 7.0.7, if a user attempted to attach to the database while the DBR process was
executing, when the DBR process completed, the database monitor would incorrectly start a new AIJ Log
Server (ALS) process. The monitor would then wait for the ALS process to terminate before responding to the
RMU/CLOSE/WAIT command. Since the ALS process had never been instructed to terminate, the database
shutdown would never complete and no response was ever delivered to the RMU process that issued the close
request.

The only way to avoid this problem is to prevent users from attempting to attach to the database immediately
after it has been closed. When the problem occurs, the ALS process must be manually deleted by using the
DCL STOP/IDENTIFICATION command or by issuing another RMU/CLOSE command with the
/ABORT=DELPRC qualifier.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.12 Query With EXISTS Clause and COMPUTED BY Column
Returns Wrong Results

Oracle® Rdb for OpenVMS

2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate 23

Bug 2452636

The following query, checking for EXISTS clause with an equality predicate involving a column of
"COMPUTED BY", returns wrong results when applying a match strategy.

Columns for table T2:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
A_DATE DATE VMS
A_SEC_NAME CHAR(12)
A_DET_METHOD INTEGER
A_CALC_PRICE INTEGER
A_BAD_CMPBY INTEGER
 Computed: by
 case
 when (A_CALC_PRICE > 0 and
 A_CALC_PRICE =
 (select T0.A_PRICE from T0
 where T0.A_SEC_NAME = T0.A_SEC_NAME
 and T0.A_DATE = T0.A_DATE
 and T0.A_PRICE_SOURCE = 'GIC'
 and T0.A_PRICE_TYPE = 'STL' limit to 1 rows))
 then A_DET_METHOD
 else 5
 end

Indexes on table T2:
T2_NDX with column A_SEC_NAME
 and column A_DATE

set flags 'strategy,detail';
sel a_data from T1 s
where exists (select * from T2 p
 where p.A_SEC_NAME=s.A_SEC_NAME and
 p.a_date=s.a_date and
 p.a_bad_cmpby = 2);
Tables:
 0 = T1
 1 = T2
 2 = T0
Conjunct: <agg0> <> 0
Match
 Outer loop
 Sort: 0.A_SEC_NAME(a), 0.A_DATE(a)
 Cross block of 2 entries
 Cross block entry 1
 Aggregate: 1:VIA (2.A_PRICE)
 Firstn: 1
 Leaf#01 FFirst 2:T0 Card=10
 Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE) AND (
 2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL')
 BgrNdx1 T0_NDX [2:2] Fan=9
 Keys: (2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL')
 Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE)
 Cross block entry 2
 Leaf#02 BgrOnly 0:T1 Card=2
 BgrNdx1 T1_NDX [0:0] Fan=10
 Inner loop (zig−zag)
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Get Retrieval by index of relation 1:T2

Oracle® Rdb for OpenVMS

2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate 24

 Index name T2_NDX [0:0]
 A_DATA
 14
 10
2 rows selected

Notice that the following equality predicate, "p.a_bad_cmpby = 2", involving the "Computed by" column
A_BAD_CMPBY is missing in the above strategy and thus, the query returns the wrong result of 2 rows.
P.a_bad_cmpby represents the following CASE statement:

case
 when (A_CALC_PRICE > 0 and
 A_CALC_PRICE =
 (select T0.A_PRICE from T0
 where T0.A_SEC_NAME = T0.A_SEC_NAME
 and T0.A_DATE = T0.A_DATE
 and T0.A_PRICE_SOURCE = 'GIC'
 and T0.A_PRICE_TYPE = 'STL' limit to 1 rows))
 then A_DET_METHOD
 else 5
end

Notice that the select statement references only a single table T0.

The missing conjunct is supposed to be generated in the following format with the aggregate value
represented by <agg0>.

Conjunct: CASE (WHEN ((1.A_CALC_PRICE > 0) AND (1.A_CALC_PRICE = <agg0>))
 THEN 1.A_DET_METHOD ELSE 5) = 2

The reason that the conjunct is not created in the query is that the inner match leg contains only the context
"1:T2" while the conjunct involves an aggregate value with external context "0:T0" from the outer match leg.

Here is one workaround for the problem. This query works if an outline is used to change the strategy from
match to cross, since the inner cross leg contains both the contexts from the outer and inner cross legs.

sel a_data from T1 s
where exists (select * from T2 p
 where p.A_SEC_NAME=s.A_SEC_NAME and
 p.a_date=s.a_date and
 p.a_bad_cmpby = 2);
~S: Outline "TEST_BUG_OUTLINE" used
Tables:
 0 = T1
 1 = T2
 2 = T0
Cross block of 3 entries
 Cross block entry 1
 Aggregate: 0:VIA (2.A_PRICE)
 Firstn: 1
 Leaf#01 FFirst 2:T0 Card=10
 Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE) AND (
 2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL')
 BgrNdx1 T0_NDX [2:2] Fan=9
 Keys: (2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL')
 Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE)
 Cross block entry 2
 Leaf#02 FFirst 0:T1 Card=2

Oracle® Rdb for OpenVMS

2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate 25

 BgrNdx1 T1_NDX [0:0] Fan=10
 Cross block entry 3
 Conjunct: <agg1> <> 0
 Aggregate−F1: 1:COUNT−ANY (<subselect>)
 Leaf#03 FFirst 1:T2 Card=2
 Bool: (1.A_SEC_NAME = 0.A_SEC_NAME) AND (1.A_DATE = 0.A_DATE) AND (CASE (
 WHEN ((1.A_CALC_PRICE > 0) AND (1.A_CALC_PRICE = <agg0>
 1.A_DET_METHOD ELSE 5) = 2)
 BgrNdx1 T2_NDX [2:2] Fan=10
 Keys: (1.A_SEC_NAME = 0.A_SEC_NAME) AND (1.A_DATE = 0.A_DATE)
−− Rdb Generated Outline : 25−JUN−2003 11:30
create outline QO_F5E5D311487F5E17_00000000
id 'F5E5D311487F5E1776847CFB5A9C308B'
mode 0
as (
 query (
−− For loop
 subquery (
 subquery (
 T0 2 access path index T0_NDX
)
 join by cross to
 T1 0 access path index T1_NDX
 join by cross to
 subquery (
 T2 1 access path index T2_NDX
)
)
)
)
compliance optional ;
0 rows selected

Here is another possible workaround. The query also works if the COMPUTED BY column is changed to join
the tables T0 and T2 instead of single table T0.

alter table T2 add column A_GOOD_CMPBY
 computed by
 case
 when (A_CALC_PRICE > 0 and
 A_CALC_PRICE =
 (select T0.A_PRICE from T0
 where T0.A_SEC_NAME = T2.A_SEC_NAME
 and T0.A_DATE = T2.A_DATE
 and T0.A_PRICE_SOURCE = 'GIC'
 and T0.A_PRICE_TYPE = 'STL' limit to 1 rows))
 then A_DET_METHOD
 else 5
 end;

sel a_data from T1 s
where exists (select * from T2 p
 where p.A_SEC_NAME=s.A_SEC_NAME and
 p.a_date=s.a_date and
 p.a_good_cmpby = 2);
Tables:
 0 = T1
 1 = T2
 2 = T0
Conjunct: <agg0> <> 0

Oracle® Rdb for OpenVMS

2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate 26

Match
 Outer loop (zig−zag)
 Get Retrieval by index of relation 0:T1
 Index name T1_NDX [0:0]
 Inner loop
 Aggregate: 0:COUNT−ANY (<subselect>)
 Cross block of 2 entries
 Cross block entry 1
 Get Retrieval by index of relation 1:T2
 Index name T2_NDX [0:0]
 Cross block entry 2
 Conjunct: CASE (WHEN ((1.A_CALC_PRICE > 0) AND (1.A_CALC_PRICE = <agg1>)
) THEN 1.A_DET_METHOD ELSE 5) = 2
 Aggregate: 1:VIA (2.A_PRICE)
 Firstn: 1
 Leaf#01 FFirst 2:T0 Card=10
 Bool: (2.A_SEC_NAME = 1.A_SEC_NAME) AND (2.A_DATE = 1.A_DATE) AND (
 2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL')
 BgrNdx1 T0_NDX [4:4] Fan=9
 Keys: (2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') AND (
 2.A_SEC_NAME = 1.A_SEC_NAME) AND (2.A_DATE = 1.A_DATE)
0 rows selected

Notice that the conjunct with aggregate value now appears in the Cross block entry 2 under the Inner loop of
the match strategy.

This query works since the context "1:T2" is joined by cross strategy with the context "2:T0" and the conjunct
with aggregate value is properly resolved with all the contexts available.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.13 Bugcheck in DIO$FREE_CURRENT_LOCK for Sorted
Ranked Indexes

Bug 2874671

If a cursor was used to fetch rows, and the transaction was committed between fetches, and the retrieval
strategy involved a backwards scan of an index of TYPE IS SORTED RANKED, then Rdb could generate a
bugcheck dump.

The problem occurred because Oracle Rdb mistakenly released a lock prematurely. Later, when Oracle Rdb
was truly finished with the resource, a bugcheck occurred because a second attempt was made to release the
same lock.

The following example uses the MF_PERSONNEL database to demonstrate the problem.

SQL> at 'f mf_personnel';
SQL> drop index EMP_EMPLOYEE_ID;
SQL> commit;
SQL> create unique index EMP_EMPLOYEE_ID
cont> on EMPLOYEES (EMPLOYEE_ID asc)
cont> type is SORTED ranked
cont> node size 430
cont> disable compression;
SQL> commit work;

Oracle® Rdb for OpenVMS

2.1.13 Bugcheck in DIO$FREE_CURRENT_LOCK for Sorted Ranked Indexes 27

SQL> declare transaction read write isolation level read committed;
SQL> declare t2 table cursor with hold preserve all for
cont> select *
cont> from employees
cont> where employee_id > '00300'
cont> and employee_id < '00400'
cont> order by employee_id desc;
SQL> open t2;
SQL> fetch t2;
 EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
 ADDRESS_DATA_1 ADDRESS_DATA_2 CITY
 STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
 00374 Andriola Leslie Q
 111 Boston Post Rd. Salisbury
 NH 03268 M 19−Mar−1955 1

SQL> commit;
SQL> fetch t2;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file
MBRADLEY_USR:[BRADLEY]RDSBUGCHK.DMP;

The problem can be avoided by disabling the backward scan feature using the
RDMS$DISABLE_REVERSE_SCAN logical name.

The problem does not occur if all rows are fetched in the same transaction.

The problem does not occur if the index being scanned is not of TYPE IS SORTED RANKED.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.14 Ranked Index Overflow Node Corruption on Insert

Bug 3009262

A problem in the way Rdb chooses the insertion point for the dbkey in a Ranked Index duplicate node may, in
rare circumstances, cause a corruption of the index entry overflow node. This node corruption may manifest
itself as a bugcheck when trying to access the records associated with the overflow node, as in the following
example.

***** Exception at 00C72D78 : PSII2SCANGETNEXTBBCDUPLICATE + 00000128
%COSI−F−BUGCHECK, internal consistency failure

Or, this node corruption may be seen as a corrupt index warning when RMU/VERIFY/INDEX is used to
verify the ranked index. For example:

%RMU−I−BTRDUPCAR, Inconsistent duplicate cardinality (C1) of 221 specified
 for entry 1 at dbkey 85:807:1.
 Actual count of duplicates is 251.
%RMU−I−BTRERPATH, parent B−tree node of 85:807:1 is at 85:806:0
%RMU−I−BTRROODBK, root dbkey of B−tree is 85:806:0
%RMU−W−DATNOTIDX, Row in table TT11 is not in any indexes.
 Logical dbkey is 83:82:2.
%RMU−W−BADIDXREL, Index INDTT either points to a non−existent record or
 has multiple pointers to a record in table TT11.
 The logical dbkey in the index is 83:127:8.

Oracle® Rdb for OpenVMS

2.1.14 Ranked Index Overflow Node Corruption on Insert 28

A dump of the offending overflow node will show that even though the reference dbkey is correct, all the
dbkeys in the overflow node may be incorrect and possibly not valid record dbkeys.

The problem may only occur on Sorted Ranked index entries that are volatile enough so that more than one
overflow node is required to hold the duplicates and that, due to removal of dbkeys from the entry, at least one
non−final overflow node has subsequently been removed from the entry.

A subsequent insertion of a new duplicate in that entry may, if the insertion dbkey happens to be greater than
the last dbkey in an overflow node but less than the reference dbkey of the next overflow node, incorrectly
update the overflow node causing the subsequent corruption.

This problem only occurs with Sorted Ranked indexes.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.15 Illegal Page Count Error in the Dynamic Optimizer

Bug 3045841

When a very large table was queried, and the access strategy used the dynamic optimizer, and the first two
indexes used both returned more than 1024 dbkeys, an illegal page count error could be generated.

To encounter this error, the table had to have close to one billion (1,000,000,000) rows.

In addition, the retrieval strategy for the query must use the dynamic optimizer where at least two indices
return more than 1024 dbkeys.

In this case, the dynamic optimizer will allocate memory for a dbkey bitmap. In calculating the size of that
bitmap, integer (signed longword) arithmetic was used, and an integer overflow could cause the calculation to
result in a negative number being used as the requested amount of memory.

The following example shows a query on a table containing one billion (1,000,000,000) rows.

SQL> select * from t1
cont> where f1 >0 and f2 > 0
cont> optimize for total time;
%COSI−F−UNEXPERR, unexpected system error
−SYSTEM−F−ILLPAGCNT, illegal page count parameter

A bugcheck dump may also be generated with the following exception and call sequence:

***** Exception at 00FE3664 : COSI_MEM_GET_VM + 000007B4
%COSI−F−UNEXPERR, unexpected system error
−SYSTEM−F−ILLPAGCNT, illegal page count parameter
Saved PC = 00FE2E68 : COSI_MEM_GET_POOL + 00000048
Saved PC = 00E3CCE8 : RDMS$$EXE_LEAF + 00001A38
Saved PC = 00E290B4 : RDMS$$EXE_OPEN + 00000764

The problem would not occur if any of the conditions described above were not true.

The problem can be avoided by disabling the dynamic optimizer for the query by using a query outline with
the clause EXECUTION OPTIONS NONE.

Oracle® Rdb for OpenVMS

2.1.15 Illegal Page Count Error in the Dynamic Optimizer 29

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.16 Bugcheck During Create Index with Mapping Values

Bug 2992315

SQL Create Index on a table with multiple storage areas and mapping values fails with a bugcheck.

The following example shows a typical stack trace.

***** Exception at 007CFA67 : PSIIBUILD$BUILD_FROM_BOTTOM + 00000693
Saved PC = 80000014 : symbol not found
Saved PC = 007CC32E : PSII$CREATE_TREE + 000000B6
Saved PC = 006AE447 : RDMS$$KOD_CREATE_TREE + 00000168
Saved PC = 006AE1AF : RDMS$$KOD_CREATE_INDEX + 00000320
Saved PC = 0061C416 : RDMS$$CREATE_INDEX_INFO + 0000234F

Possible workarounds include: create the index on an Alpha node or do not use mapping values.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.17 Error %RDMS−E−NOSOL_FOUND in Full Outer Join
Query

Bug 2669656

The following full outer natural join query between columns of different data types fails using the cross
strategy (it should succeed applying the match strategy):

create table x1 (f1 char(10));
create table x2 (f1 integer);
create table x3 (f1 char(10));

insert into x1 value ('1');
insert into x2 value (1);
insert into x2 value (−1);
insert into x3 value ('1');
insert into x3 value ('−1');

select * From x1 natural full outer join x2;
~S: Full OJ query with cross strategy was not possible
%RDMS−E−NOSOL_FOUND, No possible solution has been found by Rdb optimizer

As a workaround, the following full outer join between columns of the same data type works applying a
match strategy.

select * From x1 natural full outer join x3;
Tables:
 0 = X1
 1 = X3
Match (Full Outer Join)
 Outer loop
 Sort: 0.F1(a)
 Get Retrieval sequentially of relation 0:X1

Oracle® Rdb for OpenVMS

2.1.16 Bugcheck During Create Index with Mapping Values 30

 Inner loop
 Temporary relation
 Sort: 1.F1(a)
 Get Retrieval sequentially of relation 1:X3
 F1
 −1
 1
2 rows selected

The following query should apply a match strategy as suggested by the outline bug_outline.

create outline bug_outline
id '6CBC3F110B75FD48C256CE94DCEB8A1F'
mode 0
as (
 query (
−− For loop
 subquery (
 X1 0 access path sequential
 join by match to
 X2 1 access path sequential
)
)
)
compliance optional ;

select * from x1 , x2 where x1.f1 = x2.f1;
~S: Outline "BUG_OUTLINE" used
~S: Full compliance with the outline was not possible
Tables:
 0 = X1
 1 = X2
Cross block of 2 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 0:X1
 Cross block entry 2
 Conjunct: 0.F1 = 1.F1
 Get Retrieval sequentially of relation 1:X2
 X1.F1 X2.F1
 1 1
1 row selected

But the query works if one of the join predicates is cast as the same data type as the other as in the following
example.

create outline bug_good_outline
id '0EEB4BC11CF012EDB10AEA1C16EC0E70'
mode 0
as (
 query (
−− For loop
 subquery (
 X1 0 access path sequential
 join by match to
 X2 1 access path sequential
)
)
)
compliance optional ;

Oracle® Rdb for OpenVMS

2.1.16 Bugcheck During Create Index with Mapping Values 31

select * from x1 , x2 where cast(x1.f1 as integer) = x2.f1;
~S: Outline "BUG_GOOD_OUTLINE" used
Tables:
 0 = X1
 1 = X2
Conjunct: CAST (0.F1 AS INT) = 1.F1
Match
 Outer loop
 Sort: CAST (0.F1 AS INT)(a)
 Get Retrieval sequentially of relation 0:X1
 Inner loop
 Temporary relation
 Sort: 1.F1(a)
 Get Retrieval sequentially of relation 1:X2
 X1.F1 X2.F1
 1 1
1 row selected

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.18 TRUNCATE TABLE and RMU /REPAIR Corruption
Corrected

Previously, when using the TRUNCATE TABLE statement followed by a RMU /REPAIR /ABM command
executed one or more times, various corruptions of the SPAM and ABM structures could occur. This could
sometimes lead to table records that had been truncated "reappearing" in the table unexpectedly.

The following example demonstrates one possible symptom of this problem detected by RMU /VERIFY:

$ SQL$
 CREATE DATABASE FILENAME 'TEST.RDB'
 CREATE STORAGE AREA RDB$SYSTEM FILENAME 'RDB$SYSTEM.RDA'
 CREATE STORAGE AREA AREA FILENAME 'AREA.RDA';
 CREATE TABLE TAB (ID INTEGER);
 CREATE INDEX IND ON TAB (ID) STORE IN AREA;
 CREATE STORAGE MAP TM FOR TAB STORE IN AREA;
 COMMIT;
 INSERT INTO TAB VALUES (1);
1 row inserted
 COMMIT;
 TRUNCATE TABLE TAB;
 COMMIT;
 EXIT;
$!
$ RMU/VER/ALL/NOLOG TEST
%RMU−I−NODATANDX, no data records in index IND
$!
$ RMU/REPAIR/ABM TEST
%RMU−I−FULBACREQ, A full backup of this database should be
performed after RMU REPAIR
$ RMU/VER/ALL/NOLOG TEST
%RMU−W−AIPLAREID, area inventory page 152 entry #9 contains a
 reference to logical area 58 that is nonexistent
%RMU−W−BADABMPTR, invalid larea for ABM page 5 in storage area 2.
 The SPAM page entry for this page is for a different larea.
 SPAM larea_dbid : 0 page larea_dbid: 58.
%RMU−W−BADABMPTR, invalid larea for ABM page 6 in storage area 2.
 The SPAM page entry for this page is for a different larea.

Oracle® Rdb for OpenVMS

2.1.18 TRUNCATE TABLE and RMU /REPAIR Corruption Corrected 32

 SPAM larea_dbid : 0 page larea_dbid: 58.
%RMU−W−BADABMPTR, invalid larea for ABM page 7 in storage area 2.
 The SPAM page entry for this page is for a different larea.
 SPAM larea_dbid : 0 page larea_dbid: 58.
%RMU−E−BADABMPAG, error verifying ABM pages
%RMU−I−NODATANDX, no data records in index IND

This problem has been corrected in Oracle Rdb Release 7.0.7.1. The RMU /REPAIR /ABM command no
longer incorrectly updates the SPAM and ABM structures after a TRUNCATE TABLE operation.

2.1.19 UNION Query With Two Left Outer Joins in First Leg
Returns Wrong Results

Bugs 3076004 and 2529598

The following UNION query with left outer join should return 1 row.

set flags 'strategy,detail';
select routing_id from
 (select
 C4.ROUTING_ID,
 C2.FY,
 C2.PAY_PERIOD
 from
 ROSTER as C2
 left outer join
 WORK_AUTH as C4
 on (C2.AUTH_NBR = C4.AUTH_NBR)
 left outer join
 TAX_BEN as C5
 ON (C2.AUTH_NBR = C5.TAX_BEN_NBR)
 union
 select
 C6.ROUTING_ID,
 C7.FY,
 C7.PAY_PERIOD
 from
 WORK_AUTH as C6, PAY_PERIOD as C7)
 AS DT (ROUTING_ID, FY, PAY_PERIOD)
 where
 fy='2004' and pay_period='01' and routing_id = 'R91297';
Tables:
 0 = ROSTER
 1 = WORK_AUTH
 2 = TAX_BEN
 3 = WORK_AUTH
 4 = PAY_PERIOD
Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
 Merge of 2 entries
 Merge block entry 1
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Leaf#01 BgrOnly 0:ROSTER Card=2

Oracle® Rdb for OpenVMS

2.1.19 UNION Query With Two Left Outer Joins in First Leg Returns Wrong Results 33

 BgrNdx1 ROSTER_NDX [2:2] Fan=15
 Keys: (<mapped field> = '2004') AND (<mapped field> = '01')
 Cross block entry 2
 Leaf#02 BgrOnly 1:WORK_AUTH Card=1
 Bool: 0.AUTH_NBR = 1.AUTH_NBR
 BgrNdx1 WORK_AUTH_NDX [1:1] Fan=16
 Keys: <mapped field> = 'R91297'
 Cross block entry 2
 Conjunct: 0.AUTH_NBR = 2.TAX_BEN_NBR
 Index only retrieval of relation 2:TAX_BEN
 Index name TAX_BEN_NDX [1:1]
 Keys: 0.AUTH_NBR = 2.TAX_BEN_NBR
 Merge block entry 2
 Cross block of 2 entries
 Cross block entry 1
 Conjunct: 3.ROUTING_ID = 'R91297'
 Index only retrieval of relation 3:WORK_AUTH
 Index name WORK_AUTH_NDX [1:1]
 Keys: <mapped field> = 'R91297'
 Cross block entry 2
 Conjunct: (4.FY = '2004') AND (4.PAY_PERIOD = '01')
 Index only retrieval of relation 4:PAY_PERIOD
 Index name PAY_PERIOD_NDX [2:2]
 Keys: (<mapped field> = '2004') AND (<mapped field> = '01')
 ROUTING_ID
 R91297
 NULL
2 rows selected

This problem is similar to the previous Bug 2529598 where the fix did not cover the current case with two left
outer joins in the first UNION leg. The conjunct "routing_id = 'R91297'" is generated at the top of the second
UNION (merge) leg but not at the top of the first leg and thus returns the wrong result.

The query works if the legs of the UNION clause are swapped, as in the following example:

select routing_id from
 (
 select
 C6.ROUTING_ID,
 C7.FY,
 C7.PAY_PERIOD
 from
 WORK_AUTH as C6, PAY_PERIOD as C7
 union
 select
 C4.ROUTING_ID,
 C2.FY,
 C2.PAY_PERIOD
 from
 ROSTER as C2
 left outer join
 WORK_AUTH as C4
 on (C2.AUTH_NBR = C4.AUTH_NBR)
 left outer join
 TAX_BEN as C5
 ON (C2.AUTH_NBR = C5.TAX_BEN_NBR)
)
 AS DT (ROUTING_ID, FY, PAY_PERIOD)
 where
 fy='2004' and pay_period='01' and routing_id = 'R91297';

Oracle® Rdb for OpenVMS

2.1.19 UNION Query With Two Left Outer Joins in First Leg Returns Wrong Results 34

Tables:
 0 = WORK_AUTH
 1 = PAY_PERIOD
 2 = ROSTER
 3 = WORK_AUTH
 4 = TAX_BEN
Conjunct: <mapped field> = 'R91297'
Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
 Conjunct: 1.FY = '2004'
 Conjunct: 1.PAY_PERIOD = '01'
 Merge of 2 entries
 Merge block entry 1
 Cross block of 2 entries
 Cross block entry 1
 Conjunct: 0.ROUTING_ID = 'R91297'
 Index only retrieval of relation 0:WORK_AUTH
 Index name WORK_AUTH_NDX [1:1]
 Keys: <mapped field> = 'R91297'
 Cross block entry 2
 Conjunct: (1.FY = '2004') AND (1.PAY_PERIOD = '01')
 Index only retrieval of relation 1:PAY_PERIOD
 Index name PAY_PERIOD_NDX [2:2]
 Keys: (<mapped field> = '2004') AND (<mapped field> = '01')
 Merge block entry 2
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Leaf#01 BgrOnly 2:ROSTER Card=2
 BgrNdx1 ROSTER_NDX [2:2] Fan=15
 Keys: (<mapped field> = '2004') AND (<mapped field> = '01')
 Cross block entry 2
 Conjunct: 2.AUTH_NBR = 3.AUTH_NBR
 Get Retrieval by index of relation 3:WORK_AUTH
 Index name WORK_AUTH_NDX [0:0]
 Cross block entry 2
 Leaf#02 BgrOnly 4:TAX_BEN Card=1
 Bool: 2.AUTH_NBR = 4.TAX_BEN_NBR
 BgrNdx1 TAX_BEN_NDX [1:1] Fan=17
 Keys: 2.AUTH_NBR = 4.TAX_BEN_NBR
 ROUTING_ID
 R91297
1 row selected

Notice that the "Conjunct: <mapped field> = 'R91297'" is now generated on top of both UNION legs. Even
though the conjunct is NOT efficiently optimized by being pushed down to the second leg, at least the query
works correctly.

There is no known workaround other than the above−mentioned query with UNION legs swapped.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.1.19 UNION Query With Two Left Outer Joins in First Leg Returns Wrong Results 35

2.1.20 Logical Area Record Erasure Count Not Updated for
Cached Rows

Bug 3099718

Previously, logical area statistics for record erase operations were not correctly counted when erasing rows in
a row cache.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.21 Query With Sum Function of Two Select Counts
Bugchecks

Bug 2649215

A query with a sum function of two select counts could produce a bugcheck.

 select sum ((select count (*) − (select count (*) from T1
 where T1.F1 = T2.F1
 and T1.F2 = T2.F2)
 from T2
 where F3 = 'B'
 group by T2.F1, T2.F2)
)
 from rdb$database;
%DEBUG−I−DYNMODSET, setting module RDMS$PREEXEASN
%SYSTEM−F−BREAK, breakpoint fault at PC=003995E9, PSL=03C00004
break on exception at RDMS$PREEXEASN\RDMS$$FIND_VALID_SEG_CRTV\%LINE 8443 in
EAD 1

The query works if one of the equality predicates is removed, as in the following example.

select sum ((select count (*)
 − (select count (*) from T1 where
 T1.F1 = T2.F1
!−−− and T1.F2 = T2.F2
)
 from T2 where F3 = 'B'
 group by T2.F1, T2.F2
))
from rdb$database;
Tables:
 0 = RDB$DATABASE
 1 = T2
 2 = T1
Aggregate: 0:SUM (<agg1>)
Cross block of 2 entries
 Cross block entry 1
 Aggregate: 1:VIA (<mapped field> − <agg2>)
 Cross block of 2 entries
 Cross block entry 1
 Aggregate: 2:COUNT (*)
 Index only retrieval of relation 2:T1
 Index name U1_T1 [1:1]
 Keys: 2.F1 = 1.F1

Oracle® Rdb for OpenVMS

2.1.20 Logical Area Record Erasure Count Not Updated for Cached Rows 36

 Cross block entry 2
 Aggregate: 3:COUNT (*)
 Conjunct: 1.F3 = 'B'
 Get Retrieval by index of relation 1:T2
 Index name U1_T2 [0:0]
 Cross block entry 2
 Retrieval sequentially of relation 0:RDB$DATABASE

 1
1 row selected

The query also works if the SUM function is removed.

select count (*) − (select count (*) from T1
 where T1.F1 = T2.F1
 and T1.F2 = T2.F2)
 from T2
 where F3 = 'B'
 group by T2.F1, T2.F2
 ;
Tables:
 0 = T2
 1 = T1
Cross block of 2 entries
 Cross block entry 1
 Aggregate: 0:COUNT (*)
 Conjunct: 0.F3 = 'B'
 Get Retrieval by index of relation 0:T2
 Index name U1_T2 [0:0]
 Cross block entry 2
 Aggregate: 1:COUNT (*)
 Index only retrieval of relation 1:T1
 Index name U1_T1 [2:2] Direct lookup
 Keys: (1.F1 = 0.F1) AND (1.F2 = 0.F2)

 0
1 row selected

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.22 Left Outer Join Query With CONCAT Function Returns
Wrong Results

Bugs 3139961, 2836144, 1837522

The following query with CONCAT function returns wrong results (should return 4 rows).

set flags 'strategy,detail';
select T1.YEAR,T1.WEEK,T1.KODE
 FROM T1 LEFT OUTER JOIN T2
 ON T1.YEAR = T2.YEAR AND T1.KODE = T2.KODE,
 T3 where
 (T1.YEAR||T1.WEEK <='200337') and
 T3.IPROC = T1.IPROC AND
 T3.ITEAM = T1.ITEAM ;

Oracle® Rdb for OpenVMS

2.1.22 Left Outer Join Query With CONCAT Function Returns Wrong Results 37

Tables:
 0 = T1
 1 = T2
 2 = T3
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation 2:T3
 Index name T3_IND1 [0:0]
 Cross block entry 2
 Conjunct: ((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND
 <error: missing expression>) OR ((0.YEAR = SUBSTRING ('200337'
 FROM 0 FOR 4)) AND (0.WEEK <= SUBSTRING ('200337' FROM 4)))
 Cross block of 2 entries (Left Outer Join)
 Cross block entry 1
 Leaf#01 FFirst 0:T1 Card=4
 Bool: (((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND NOT
 MISSING (0.WEEK)) OR ((0.YEAR = SUBSTRING ('200337'
 FROM 0 FOR 4)) AND (0.WEEK <= SUBSTRING ('200337' FROM 4)))
) AND (2.IPROC = 0.IPROC) AND (2.ITEAM = 0.ITEAM)
 BgrNdx1 T1_IND2 [0:0] Fan=15
 BgrNdx2 T1_IND1 [0:0] Fan=14
 Bool: ((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND NOT
 MISSING (0.WEEK)) OR ((0.YEAR = SUBSTRING ('200337'
 FROM 0 FOR 4)) AND (0.WEEK <= SUBSTRING ('200337' FROM 4)
))
 Cross block entry 2
 Conjunct: (0.YEAR = 1.YEAR) AND (0.KODE = 1.KODE)
 Index only retrieval of relation 1:T2
 Index name T2_IND1 [2:2] Direct lookup
 Keys: (0.YEAR = 1.YEAR) AND (0.KODE = 1.KODE)
 T1.YEAR T1.WEEK T1.KODE
 2003 26 270
 2003 34 270
2 rows selected

The problem is caused by the fix made for Bug 1837522 in Oracle Rdb Release 7.0.6.2 where a left outer join
query with OR predicate returns wrong results.

Even though this query apparently does not contain an OR predicate, the Oracle Rdb optimizer transforms the
CONCAT function into an OR expression with two SUBSTRING functions, as seen in the following detail
strategy.

 Bool: (((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND
 NOT MISSING (0.WEEK)) OR
 ((0.YEAR = SUBSTRING ('200337' FROM 0 FOR 4)) AND
 (0.WEEK <= SUBSTRING ('200337' FROM 4)))) AND
 (2.IPROC = 0.IPROC) AND (2.ITEAM = 0.ITEAM)

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.23 RCS Bugchecks at DIOCCH$UNMARK_GRIC_ENT

Bug 2502144

Oracle® Rdb for OpenVMS

2.1.23 RCS Bugchecks at DIOCCH$UNMARK_GRIC_ENT 38

In prior releases of Oracle Rdb, it was possible for the Record Cache Server (RCS) process to bugcheck in
DIOCCH$UNMARK_GRIC_ENT. This problem was due to an incorrect check in the RCS process while
evaluating the amount of locked space on a database page that is owned by the RCS.

When the RCS process writes an erased or resized record back to the database page, it must return the
resultant locked space on the page back to free space. This is because the RCS is not allowed to "own" locked
space. As part of this action, the RCS was checking to make sure that the amount of locked space being
returned exactly matched the length of the space being returned by the erased or resized record. This check
was not taking into account the possibility that there was existing locked space on the page marked with the
TID of the RCS. In such a case, the RCS could find that it "owned" more locked space than it expected and
would bugcheck.

This problem has been corrected in Oracle Rdb Release 7.0.7.1. The RCS process now correctly evaluates and
releases all locked space on the page that is owned by the RCS after writing an erased or resized record back
to the database.

2.1.24 Wrong Sort Order for Query with Aggregate, Group By,
Order By

Bug 3077857

Before the problem was fixed, the query in the example below returned the results in ascending order of the
NTS_FLAG column, in contradiction to the explicit DESCENDING attribute in the ORDER BY clause. The
problem appeared when RDM$BIND_BUFFERS was set to 200 but not when it was set to 20.

set flags 'detail,strategy';

select Max(SERVICE_SUM.NTS_FLAG) NTS_FLAG
 from SERVICE_SUM, INFO_PROVIDER_CODE_PARENT
 where SERVICE_SUM.CALL_END_DATE between
 DATE ANSI '2003−07−16' and DATE ANSI '2003−07−16'
 and
 SERVICE_SUM.DIALED_NO = INFO_PROVIDER_CODE_PARENT.DIALED_NO
 group by SERVICE_SUM.NTS_FLAG
 order by SERVICE_SUM.NTS_FLAG DESC;

The change in the value for RDMS$BIND_BUFFERS had the effect of changing the optimizer query strategy
from a CROSS join to a MATCH join. Using interactive SQL, for example, this could be seen by first
enabling output of the optimizer strategy (see the SET FLAGS statement in the preceding example). The
combination of MATCH join, aggregate query, ascending GROUP BY sort, and descending ORDER BY sort,
plus the optimizer logic to try to eliminate unnecessary sorts were the conditions needed for the problem to
appear.

As a workaround, the problem could be made to go away by reducing the value in RDM$BIND_BUFFERS
from 200 to 20 or by creating a query outline forcing a CROSS join strategy.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.1.24 Wrong Sort Order for Query with Aggregate, Group By, Order By 39

2.1.25 Left Outer Join Query with SUBSTRING and
CHAR_LENGTH Bugchecks

Bug 2851595

The following left outer join query with SUBSTRING and CHAR_LENGTH bugchecks during the process of
creating a match retrieval strategy.

select e.employee_id
 from employees e left outer join job_history jh
 on (e.employee_id =
 substring (jh.employee_id from 1
 for char_length (e.employee_id)));
%DEBUG−I−DYNMODSET, setting module RDMS$PREEXEMSC
%SYSTEM−F−BREAK, breakpoint fault at PC=003A4CD6, PSL=03C00004
break on exception at RDMS$PREEXEMSC\RDMS$$FIND_MEMBER_EQV_CLASS\%LINE 4486
DBG> SH CA
 module name routine name line rel PC ab
*RDMS$PREEXEMSC RDMS$$FIND_MEMBER_EQV_CLASS
*RDMS$PREEXE RDMS$$SETUP_SORT32
*RDMS$PREEXE_CREATE
 RDMS$$CREATE_RSS$MTCH

The bugcheck is caused by a match order using equi−join keys of the outer join query, created from the
following predicate:

 (e.employee_id = substring (jh.employee_id from 1
 for char_length (e.employee_id))

where the match key on the right side depends on its own context "employees e" from its left side.

As a workaround, the query works if the function CHAR_LENGTH is applied with JH table:

select e.employee_id
 from employees e left outer join job_history jh
 on (e.employee_id =
 substring (jh.employee_id from 1
 for char_length (jh.employee_id)));
Tables:
 0 = EMPLOYEES
 1 = JOB_HISTORY
Match (Left Outer Join)
 Outer loop
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation
 Sort: SUBSTRING (1.EMPLOYEE_ID FROM (1 − 1) FOR CHAR_LENGTH (1.EMPLOYEE_ID))
 (a)
 Index only retrieval of relation 1:JOB_HISTORY
 Index name JH_EMPLOYEE_ID [0:0]
 E.EMPLOYEE_ID
 00164
 00164
 ...etc...

274 rows selected

Oracle® Rdb for OpenVMS

2.1.25 Left Outer Join Query with SUBSTRING and CHAR_LENGTH Bugchecks 40

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.26 Join Query with GROUP_BY/ORDER_BY Returns Wrong
Order

Bug 2851708

The following query with GROUP_BY/ORDER_BY, joining two derived tables with similar GROUP_BY
clauses, returns results in the wrong order (should return in descending order).

set flags 'strategy, detail';
select t1.name, t2.name, t1.datum, t2.datum
 from (select name, datum from a
 group by name, datum) t1
 join
 (select name, datum from b
 group by name, datum) t2
 on (t1.name = t2.name and t1.datum = t2.datum)
 group by t1.name, t2.name, t1.datum, t2.datum
 order by t1.name desc, t1.datum desc ;
Tables:
 0 = A
 1 = B
Reduce: 0.NAME, 0.DATUM, 1.NAME, 1.DATUM
Cross block of 2 entries
 Cross block entry 1
 Merge of 1 entries
 Merge block entry 1
 Reduce: 0.NAME, 0.DATUM
 Sort: 0.NAME(a), 0.DATUM(a) <== See Note:
 Get Retrieval sequentially of relation 0:A
 Cross block entry 2
 Merge of 1 entries
 Merge block entry 1
 Reduce: 1.NAME, 1.DATUM
 Sort: 1.NAME(d), 1.DATUM(d)
 Conjunct: (0.NAME = 1.NAME) AND (0.DATUM = 1.DATUM)
 Get Retrieval sequentially of relation 1:B
 T1.NAME T1.DATUM
 AAAA 1−JAN−2000 00:00:00.00
 BBBB 1−JAN−2000 00:00:00.00
2 rows selected

NOTE: The sort keys should be descending instead of ascending.

This problem occurs when the main query contains a GROUP BY clause on the columns of the two joined
derived tables with GROUP BY with the ORDER BY clause referencing the columns of the first table using
descending order.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.1.26 Join Query with GROUP_BY/ORDER_BY Returns Wrong Order 41

2.1.27 Query Joining Two Derived Tables of a View with UNION
Overflows the Stack

Bug 3194445

The following query, joining two derived tables of a view with UNION, overflows the stack.

select
 (select period_start_date from gl_period_vw
 where
 company_no = glpv.company_no and
 fiscal_yr = glpv.fiscal_yr
)
 as p2_period_start_date,
 (select period_end_date from gl_period_vw
 where
 company_no = glpv.company_no and
 fiscal_yr = glpv.fiscal_yr
)
 as p2_period_end_date
from gl_period_vw glpv, gl_period glp
;
%RDB−F−IMP_EXC, facility−specific limit exceeded
−RDB−I−TEXT, internal error −− query solution not found

The view is defined as:

create view GL_PERIOD_VW
 (COMPANY_NO,
 FISCAL_YR,
 PERIOD_START_DATE,
 PERIOD_END_DATE) as
 select
 C2.COMPANY_NO,
 C2.FISCAL_YR,
 C2.PERIOD_START_DATE,
 C2.PERIOD_END_DATE
 from GL_PERIOD C2
 where (C2.PERIOD_NO = 0)
 union all
 select
 C3.COMPANY_NO,
 C3.FISCAL_YR,
 C3.PERIOD_START_DATE,
 C3.PERIOD_END_DATE
 from GL_PERIOD C3, INTEGER_LIST C4
 where (C3.PERIOD_NO = 0)
 ;

This problem is caused by the fix made for Bug 2649215 where a query before bugchecks.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.1.27 Query Joining Two Derived Tables of a View with UNION Overflows the Stack 42

2.1.28 Query with Shared Expression in Two Predicates Returns
Wrong Results

Bug 3201864

The following query with shared expression in two predicates should return 1 row but instead returns 2 rows.

set flags 'strategy,detail';

SELECT T1.CODE,T2.ALUM, T1.ALUM, T2.CODE
 FROM T1, T2, T3 WHERE
 T2.TUNE = T1.TUNE AND
 T2.SLAM = T1.SLAM AND
 T2.STAR = T1.STAR AND
 (T1.CODE >= T2.ALUM AND
 (T1.ALUM <= T2.CODE OR T2.CODE IS NULL)) AND
 T3.TUNE = T1.TUNE AND
 T3.SLAM = T1.SLAM AND
 T3.STAR = T1.STAR AND
 T2.TUNE = '240167−1447' AND
 T2.SLAM <= '31−dec−2002' AND
 (T2.CODE >= '01−jan−2002' OR T2.CODE IS NULL) AND
 NOT EXISTS
 (SELECT T4.TUNE FROM T2 T4 WHERE
 T4.TUNE = T2.TUNE AND
 T4.MAKE = '0' AND
 T4.SLAM = T2.SLAM AND
 T4.STAR = T2.STAR AND
 T4.SITE <> T2.SITE AND
 T1.ALUM >= T4.ALUM AND
 T1.CODE <= T4.CODE);
Tables:
 0 = T1
 1 = T2
 2 = T3
 3 = T2
Cross block of 4 entries
 Cross block entry 1
 Conjunct: 1.TUNE = '240167−1447'
 Conjunct: 1.SLAM <= '31−DEC−2002'
 Leaf#01 FFirst 1:T2 Card=2
 Bool: (1.CODE >= '1−JAN−2002') OR MISSING (1.CODE)
 BgrNdx1 T2_IND_1 [1:2] Fan=7
 Keys: (1.TUNE = '240167−1447') AND (1.SLAM <= '31−DEC−2002')
 Cross block entry 2
 Leaf#02 FFirst 0:T1 Card=1
 Bool: (1.TUNE = 0.TUNE) AND (1.SLAM = 0.SLAM) AND (1.STAR = 0.STAR) AND
 (0.CODE >= 1.ALUM)
 BgrNdx1 T1_IND [1:1] Fan=11
 Keys: 1.TUNE = 0.TUNE
 BgrNdx2 T1_IND_1 [3:3] Fan=8
 Keys: (1.TUNE = 0.TUNE) AND (1.SLAM = 0.SLAM) AND (1.STAR = 0.STAR)
 Cross block entry 3
 Conjunct: <agg0> = 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Leaf#03 FFirst 3:T2 Card=2
 Bool: (3.TUNE = 1.TUNE) AND (3.MAKE = '0') AND (3.SLAM = 1.SLAM) AND
 (3.STAR = 1.STAR) AND (3.SITE <> 1.SITE) AND (0.ALUM >= 3.ALUM)
 AND (0.CODE <= 3.CODE)

Oracle® Rdb for OpenVMS

2.1.28 Query with Shared Expression in Two Predicates Returns Wrong Results 43

 BgrNdx1 T2_IND_1 [3:4] Fan=7
 Keys: (3.TUNE = 1.TUNE) AND (3.SLAM = 1.SLAM) AND
 (3.STAR = 1.STAR) AND (0.ALUM >= 3.ALUM)
 Bool: (3.SLAM <= '31−DEC−2002') AND (3.TUNE = '240167−1447')
 Cross block entry 4
 Index only retrieval of relation 2:T3
 Index name T3_IND [3:3]
 Keys: (2.TUNE = 0.TUNE) AND (2.SLAM = 0.SLAM) AND (2.STAR = 0.STAR)
 T1.CODE T2.ALUM T1.ALUM
 T2.CODE
 22−FEB−2002 00:00:00.00 1−OCT−2001 00:00:00.00 22−FEB−2002 00:00:00.00
 31−JAN−2002 00:00:00.00

 22−FEB−2002 00:00:00.00 1−FEB−2002 00:00:00.00 22−FEB−2002 00:00:00.00
 31−DEC−2003 00:00:00.00
2 rows selected

The predicate "T2.CODE IS NULL" is shared by two OR clauses referencing other different tables as in the
following example.

 the first predicate (T1.ALUM <= T2.CODE OR T2.CODE IS NULL)) references
table T1 and T2, and
 the second predicate (T2.CODE >= '01−jan−2002' OR T2.CODE IS NULL)
references table T2.

However, in the detailed strategy display, the first predicate is missing under the cross block entry 2 for table
"0:T1".

As a workaround, the query works if the SQL flag 'MAX_STABILITY' is defined OR the logical name
RDMS$MAX_STABILITY is defined.

set flags 'max_stability';

Tables:
 0 = T1
 1 = T2
 2 = T3
 3 = T2
Cross block of 4 entries
 Cross block entry 1
 Conjunct: (1.CODE >= '1−JAN−2002') OR MISSING (1.CODE)
 Get Retrieval by index of relation 1:T2
 Index name T2_IND_1 [1:2]
 Keys: (1.TUNE = '240167−1447') AND (1.SLAM <= '31−DEC−2002')
 Cross block entry 2
 Conjunct: (1.SLAM = 0.ALUM) AND (1.STAR = 0.STAR) AND (0.CODE >= 1.ALUM)
 AND ((0.ALUM <= 1.CODE) OR MISSING (1.CODE))
 Get Retrieval by index of relation 0:T1
 Index name T1_IND [1:1]
 Keys: 1.TUNE = 0.TUNE
 Cross block entry 3
 Conjunct: <agg0> = 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Conjunct: (3.MAKER = '0') AND (3.SITE <> 1.SITE) AND (0.CODE <= 3.CODE)
 Get Retrieval by index of relation 3:T2
 Index name T2_IND_1 [3:4]
 Keys: (3.TUNE = 1.TUNE) AND (3.SLAM = 1.SLAM) AND
 (3.STAR = 1.STAR) AND (0.ALUM >= 3.ALUM)

Oracle® Rdb for OpenVMS

2.1.28 Query with Shared Expression in Two Predicates Returns Wrong Results 44

 Bool: (3.SLAM <= '31−DEC−2002') AND (3.TUNE = '240167−1447')
 Cross block entry 4
 Index only retrieval of relation 2:T3
 Index name T3_IND [3:3]
 Keys: (2.TUNE = 0.TUNE) AND (2.ALUM = 0.ALUM) AND (2.STAR = 0.STAR)
 T1.CODE T2.ALUM T1.ALUM
 T2.CODE
 22−FEB−2002 00:00:00.00 1−FEB−2002 00:00:00.00 22−FEB−2002 00:00:00.00
 31−DEC−2003 00:00:00.00

1 row selected

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.29 Wrong Index Retrieval is Selected in Query with GTR
Predicate

Bug 3144382

The wrong index retrieval is selected in a query with a GTR predicate.

set flags 'strategy,detail';

create index t_i on t(v1,v2,v3,v4,v5);

select * from t where
 v1='D' and v2 > 18 and
 v3 > 7 and v4 > 17 and v5 > 4
 order by v1,v2,v3,v4,v5;
Tables:
 0 = T
Conjunct: (0.V1 = 'D') AND (0.V2 > 18) AND (0.V3 > 7) AND (0.V4 > 17) AND (0.V5
 > 4)
Get Retrieval by index of relation 0:T
 Index name T_I [1:1]
 Keys: 0.V1 = 'D'
 Bool: (0.V2 > 18) AND (0.V3 > 7) AND (0.V4 > 17) AND (0.V5 > 4)
...etc...
180 rows selected

The query takes about 10.3 seconds (elapsed time) on a VAX machine.

In Oracle Rdb Release 7.0−62, the query runs fast (approximately 1 second) with the following strategy:

Tables:
 0 = T
Conjunct: ((0.V1 = <cvar>) AND (0.V2 >
<cvar>) AND (0.V3 > <cvar>)
 AND (0.V4 > <cvar>) AND (0.V5 > <cvar>))
Get Retrieval by index of relation 0:T
 Index name T_I [2:1] Bool
 Key: (0.V1 = <cvar>) AND (0.V2 > <cvar>)
 Bool: (0.V3 > <cvar>) AND (0.V4 > <cvar>) AND (0.V5 > <cvar>)

As a workaround, the query works if the SQL flag 'NOMAX_SOLUTION' is defined OR the logical name
RDMS$DISABLE_MAX_SOLUTION is defined.

Oracle® Rdb for OpenVMS

2.1.29 Wrong Index Retrieval is Selected in Query with GTR Predicate 45

set flags 'NOMAX_SOLUTION';

select * from t where
 v1='D' and v2 > 18 and
 v3 > 7 and v4 > 17 and v5 > 4
 order by v1,v2,v3,v4,v5;
Tables:
 0 = T
Conjunct: (0.V1 = 'D') AND (0.V2 > 18) AND (0.V3 > 7) AND (0.V4 > 17) AND (0.V5
 > 4)
Get Retrieval by index of relation 0:T
 Index name T_I [2:1]
 Keys: (0.V1 = 'D') AND (0.V2 > 18)
 Bool: (0.V3 > 7) AND (0.V4 > 17) AND (0.V5 > 4)

The query takes about 2.22 seconds (elapse time) on a VAX machine.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.30 Memory Corruption When Using Explicit 2PC

Bug 3230612

It was possible for an application to experience memory corruption when the following conditions were true:

Explicit two−phase commit (2PC) transactions were being utilized. That is, transactions that were
started and ended by using the system services SYS$START_TRANS and SYS$END_TRANS.

•

The application would:
Detach from the database involved in the 2PC transaction1.
Attach to a database2.
Start a new 2PC transaction3.

•

The application would allocate memory after detaching from the database and before attaching to a
database.

This problem can be avoided by not using explicit two−phase commit or by remaining attached to all
databases.

For more information regarding explicit two−phase commit transactions, see the Guide to Distributed
Transactions.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.1.31 Query Applying Zero Shortcut Returns Wrong
Results

Bug 3216607

The following query applying zero shortcut optimization should return 7 rows.

set flags 'strategy,detail';
SQL> select wip_number, plan_sequence_code
cont> from pv_errors
cont> where wip_number = 'PML_257224' and plan_sequence_code = 1;

•

Oracle® Rdb for OpenVMS

2.1.30 Memory Corruption When Using Explicit 2PC 46

~S#0004
Leaf#01 FFirst PV_ERRORS Card=151726
 BgrNdx1 PV_ERRORS_HASH [1:1] Fan=1
 BgrNdx2 PV_ERRORS_SORTED_001 [2:2] Fan=13
~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 1:_6 2:1/0/0 ZeroShortcut
0 rows selected

A number of optimization changes have been made to the latest releases of Rdb to improve how the
optimizer chooses which indexes should be used to help retrieve data.

One such improvement has been new index estimation procedures that give much more precise
estimation of the effectiveness of the use of a particular index for retrieval.

This problem may occur when the optimizer incorrectly determines that one of the indices contains no
records that could possibly satisfy the selection criteria and therefore immediately discontinues the
processing of the query, delivering no records.

This is called 'zero shortcut' optimization which can be seen in the execution trace of the query above.

~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 1:_6 2:1/0/0 ZeroShortcut

As a workaround for the problem, the query returns the correct result by adding an ORDER BY
clause.

SQL> select wip_number, plan_sequence_code
cont> from pv_errors
cont> where wip_number = 'PML_257224' and plan_sequence_code = 1
cont> order by wip_number;
 WIP_NUMBER PLAN_SEQUENCE_CODE
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
~S#0003
Leaf#01 Sorted PV_ERRORS Card=151726
 FgrNdx PV_ERRORS_HASH [1:1] Fan=1
 BgrNdx1 PV_ERRORS_SORTED_001 [2:2] Fan=13
 WIP_NUMBER PLAN_SEQUENCE_CODE
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
 PML_257224 1
~E#0003.01(1) FgrNdx Sorted DBKeys=8 Fetches=0+0 RecsOut=7
~E#0003.01(1) FgrNdx Sorted DBKeys=8 Fetches=0+0 RecsOut=7
 PML_257224 1
7 rows selected

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.1.30 Memory Corruption When Using Explicit 2PC 47

2.2 SQL Errors Fixed

2.2.1 Unexpected DATEEQLILL Error During IMPORT With
CREATE INDEX or CREATE STORAGE MAP

Bug 1094071

When the SQL IMPORT statement includes CREATE STORAGE MAP or CREATE INDEX
statements which use TIMESTAMP or DATE ANSI literals in the WITH LIMIT OF clauses, it fails
with the following error:

%SQL−F−UNSDATXPR, Unsupported date expression
−SQL−F−DATEEQLILL, Operands of date/time comparison are incorrect

The same CREATE STORAGE MAP or CREATE INDEX statements work correctly when used
outside of the IMPORT statement.

This error is generated because the SQL IMPORT statement tries to validate the data type of the
column against that of the literal value. However, during this phase of the IMPORT the table does not
yet exist.

A workaround for this problem is to use DATE VMS literals in the WITH LIMIT OF clause and
allow the Rdb Server to perform the data type conversion at runtime.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.2 Incorrect Unit for the DETECTED ASYNC PREFETCH
THRESHOLD Option

Bug 2838771

In prior versions of Oracle Rdb V7.0, the THRESHOLD option of the DETECTED ASYNC
PREFETCH clause required the units to be PAGES. However, this value is really specified in
BUFFERS.

To avoid confusion, the SQL syntax has now been changed to use the BUFFERS unit for this clause.
The older syntax is now deprecated as shown in the following example:

SQL> alter database
cont> filename 'DB$:PERSONNEL'
cont> detected async prefetch is ENABLED
cont> (depth is 4 buffers, threshold is 4 pages);
%SQL−I−DEPR_FEATURE, Deprecated Feature:
PAGES is replaced with BUFFERS

This problem has been corrected in Oracle Rdb Release 7.0.7.1. In addition, the RMU Extract
command will output the new corrected syntax.

SQL> alter database

2.2 SQL Errors Fixed 48

cont> filename 'DB$:PERSONNEL'
cont> detected async prefetch is ENABLED
cont> (depth is 4 buffers, threshold is 4 buffers);

2.2.3 DECLARE LOCAL TEMPORARY TABLE Limited to 10
Tables Per Session

Bug 2911428

In prior releases of Oracle Rdb, access to tables declared using the DECLARE LOCAL
TEMPORARY TABLE statement in interactive and dynamic SQL would fail. This problem does not
occur when DECLARE LOCAL TEMPORARY TABLE is used in a CREATE MODULE statement.

The following example shows the reported error.

SQL> select * from demo.MODULE.prodn_new_constraints_table;
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−TABIDNOTDEF, relation ID, 11, is not defined in database

This problem has been corrected in Oracle Rdb Release 7.0.7.1. This limitation has been removed
from interactive and dynamic SQL. A workaround would be to declare tables #10 and #11 and not use
those temporary tables.

2.2.4 IVP or Other Failure with Dynamic SQL if SQL$INT is
Installed /RESIDENT

Bug 2950983

In SYS$STARTUP:SQL$STARTUP.COM, if the line RESIDENT = "/RESIDENT" was present, (for
example, not commented out), the IVP failed while running the dynamic SQL test.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.5 Bugcheck at PSIINDEX$FIND_ENTS_EXACT + 54

Bug 2448304

When a combination of metadata operations was being performed in the same transaction, it was
possible that an OpenVMS Alpha bugcheck could be generated with an exception similar to the
following example.

***** Exception at 0106BC24 : PSIINDEX$FIND_ENTS_EXACT + 00000054
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
 virtual address=0000000050000038, PC=000000000106BC24, PS=0000000B

This problem was caused by an incorrect use of internal memory management optimizations. This
incorrect use can be identified by the unusual virtual adress of 0000000050000038.

Oracle® Rdb for OpenVMS

2.2.3 DECLARE LOCAL TEMPORARY TABLE Limited to 10 Tables Per Session 49

The problem can be avoided by reducing the number of metadata operations performed in a single
transaction.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.6 Multistatement Procedures Used with Connections
Resulted in %RDB−E−OBSOLETE_METADA Error Message

Bugs 1879521 and 1808821

In prior releases of Oracle Rdb, there was a problem with multiple connections and the use of
multistatement procedures. Specifically, Oracle Rdb requires a special internal module to be set up for
multistatement procedures. In the case of two or more connections calling the same multistatement
procedure, the module setup was not done for the second connection. This was incorrect behavior and
resulted in the following error message:

%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer
exist

The correct behaviour is to insure that the module setup is performed when a database switch occurs
for the first time.

Note: this problem was originally reported as fixed in Release 7.0.6.4 but the fix was inadvertently
left out of that release.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.7 IMPORT May Generate ACCVIO Exception During
Import of a Module

In previous releases of Oracle Rdb, the IMPORT command would fail with an ACCVIO exception
during import of a module that contained an external function or procedure.

The following example shows the exception.

SQL> import database
cont> from SQL_CREATE_MODULE_4G_EXP
cont> filename SQL_CREATE_MODULE_4G_DB
cont> ;
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=00000000, PC=0029908E, PSL=03C00001

This problem has been corrected in Oracle Rdb Release 7.0.7.1. SQL IMPORT now correctly handles
these types of modules.

2.2.8 Unexpected ACCVIO When Reporting Incompatible
Character Set Assignments

Bug 3098432

Oracle® Rdb for OpenVMS

2.2.6 Multistatement Procedures Used with Connections Resulted in %RDB−E−OBSOLETE_METADA Error Message50

In prior releases of Rdb, an incompatible character set assignment might cause Rdb to generate a
malformed message vector which can lead to an ACCVIO while trying to display the message.

The following example shows the problem.

SQL> select count(*) from rdb$database
cont> where _dec_mcs'a'=translate('a' using rdb$dec_kanji);
%RDB−E, invalid or unsupported data conversion
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=
00000000004F2DE4, PC=FFFFFFFF80207624, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.9 SQL−F−NODBFILE When SQL Modules are Compiled
With /CONNECT

Bug 3002999

When multiple SQL modules were called from the same main program and a disconnect was done,
under some circumstances calls to SQL modules after the disconnect would fail with the following
message:

%SQL−F−NODBFILE, Alias <ALIAS_NAME> is missing a declaration

where <ALIAS_NAME> is one of the aliases declared by one of the SQL modules. The behaviour
will occur whenever the following is true:

The SQL modules are compiled with /CONNECT (which is the default).♦
Some aliases have a run time resolution for the filename or pathname.♦
One or more modules do not declare one of the aliases which has a run−time resolution.♦
The first call after the disconnect is to a module which does not have a declaration of an alias
with a run−time resolution.

♦

As a workaround, ensure that the first SQL module called after the disconnect declares all aliases
which have a run−time resolution.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.10 GET DIAGNOSTICS Keyword CONNECTION_NAME
Returned Incorrect Value

Bug 880810

In previous versions of Oracle Rdb, the GET DIAGNOSTICS keyword CONNECTION_NAME was
not always returning the correct value. The following example shows the problem. The result
'RDB$DEFAULT_CONNECTION' was not expected but rather 'MF'.

SQL> declare :c char(31);
SQL>
SQL> attach 'alias aa filename sql$database';
SQL> connect to 'alias aa filename db$:mf_personnel' as 'MF';
SQL>

Oracle® Rdb for OpenVMS

2.2.9 SQL−F−NODBFILE When SQL Modules are Compiled With /CONNECT 51

SQL> set connect 'MF';
SQL> begin
cont> get diagnostic :c = connection_name;
cont> end;
SQL> print :c;
 C
 RDB$DEFAULT_CONNECTION
SQL>

This problem has been corrected in Oracle Rdb Release 7.0.7.1. CONNECT now correctly passes the
connection name to the Rdb server so that it can be returned by GET DIAGNOSTICS.

2.2.11 Errors Not Reported by SQL

Bug 3083552

In some cases, when a bugcheck was produced, the SQLCODE returned was 0 indicating that no error
had occurred.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.2.12 Variable Updated Though No Rows Found

Bug 2863676

Variables in SQL statements were updated even though the statement did not result in any data (for
example, no rows selected). This occurred with declared variables in interactive SQL as well as host
variables in application programs. The problem is illustrated by the following interactive SQL
example.

SQL> at 'f personnel';
SQL> declare :my_int integer;
SQL> begin set :my_int = 0; end;
SQL> select 1 from rdb$database where exists
cont> (select * from employees where employee_id = '99999');
0 rows selected
SQL> select 1 into :my_int from rdb$database where exists
cont> (select * from employees where employee_id = '99999');
SQL> print :my_int;
 MY_INT
 1
1 row selected

In the above example, the variable ":my_int" should have remained zero since no rows were selected.

As a workaround, the application must examine the SQLSTATE or SQLCODE after each such
statement and restore the original value of the variable as needed.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.2.11 Errors Not Reported by SQL 52

2.2.13 Partitioning Clause Not Working in Embedded SQL

Bug 3112810

In some cases, a sequential scan on partitioned data where the partitioning uses a VARCHAR type
column can fail (or possibly produce wrong data results).

The following example shows a typical error message:

char a_alert[6] = "XYZ05";

EXEC SQL
 SET TRANSACTION READ WRITE WAIT RESERVING
 T_LIMIT PARTITION (3) FOR EXCLUSIVE READ;

EXEC SQL
 SELECT count(*)
 into :i
 FROM T_LIMIT
 WHERE A_ALERT = :a_alert
 and (
 EXTRACT (YEAR FROM A_DATE_CREATED) * 10000 +
 EXTRACT (MONTH FROM A_DATE_CREATED) * 100 +
 EXTRACT (DAY FROM A_DATE_CREATED)
) = 20031017;

%RDB−E−UNRES_REL, relation T_LIMIT in specified request is not a relation
 reserved in specified transaction
−RDMS−E−UNRES_AREA, area 67 within relation "T_LIMIT" is not reserved

Rdb is expecting the type of the parameter in the WHERE clause to agree with the type of the column
it is comparing against (which is CHAR(5) in this case).

Interactive SQL does the data conversion and comparison correctly but SQL$PRE/CC sometimes gets
confused.

Possible workarounds include:

Use a compound statement to convert the type from VARCHAR to CHAR.
Here we recode the example query (above) as a compound statement which assigns the input
parameter into an internally declared CHAR(5) variable as follows:

EXEC SQL
 BEGIN declare :my_char char(5);
 set :my_char = :a_alert;
 SELECT count(*)
 into :i
 FROM T_LIMIT
 WHERE A_ALERT = :my_char
 and (
 EXTRACT (YEAR FROM A_DATE_CREATED) * 10000 +
 EXTRACT (MONTH FROM A_DATE_CREATED) * 100 +
 EXTRACT (DAY FROM A_DATE_CREATED)
) = 20031017; END;

1.

Oracle® Rdb for OpenVMS

2.2.13 Partitioning Clause Not Working in Embedded SQL 53

The above statement uses the "MY_CHAR" variable to convert the type of the input from
VARCHAR (which is the only way that SQL$PRE/CC will send it) into CHAR.
Use Dynamic SQL to avoid host variable inputs.
For example, in the reproducer program declare SQLDA areas as follows:

EXEC SQL INCLUDE SQLDA;
...
 struct SQLDA_STRUCT *OUT_AREA;
 OUT_AREA = calloc(1, sizeof(struct SQLDA_STRUCT) +
 (10*sizeof(struct SQLVAR_STRUCT)));
 OUT_AREA−>SQLN = 10;

Then recode the query as a dynamic statement with no input parameters like this:

 sprintf(sql_stmt,
 "SELECT count(*) \
 into ? \
 FROM T_LIMIT \
 WHERE A_ALERT = '%s' \
 and (\
 EXTRACT (YEAR FROM A_DATE_CREATED) * 10000 + \
 EXTRACT (MONTH FROM A_DATE_CREATED) * 100 + \
 EXTRACT (DAY FROM A_DATE_CREATED) \
) = 20031017", a_alert);
 EXEC SQL PREPARE stmt1 from :sql_stmt;
 EXEC SQL DESCRIBE stmt1 OUTPUT into :OUT_AREA;
 OUT_AREA−>SQLVAR[0].SQLDATA = (char *)&i;
 EXEC SQL EXECUTE stmt1 into descriptor :OUT_AREA;

2.

Use Dynamic SQL to force host variable parameter inputs to CHAR in an input SQLDA. This
method has the advantage that the request can be reused. However, it is imperative that the
input strings be space padded to the length of the data (five in our examples).
For example, declare the SQLDA items as in the Workaround 2 example above plus the
following:

 struct SQLDA_STRUCT *IN_AREA;
 IN_AREA = calloc(1, sizeof(struct SQLDA_STRUCT) +
 (10*sizeof(struct SQLVAR_STRUCT)));
 IN_AREA−>SQLN = 10;

Then recode the query to use an input SQLDA as follows:

 strcpy(sql_stmt, "SELECT count(*) \
 into ? \
 FROM T_LIMIT \
 WHERE A_ALERT = ? \
 and (\
 EXTRACT (YEAR FROM A_DATE_CREATED) * 10000 + \
 EXTRACT (MONTH FROM A_DATE_CREATED) * 100 + \
 EXTRACT (DAY FROM A_DATE_CREATED) \
) = 20031017");

 EXEC SQL PREPARE stmt2 from :sql_stmt;
 EXEC SQL DESCRIBE stmt2 OUTPUT into :OUT_AREA;
 EXEC SQL DESCRIBE stmt2 INPUT into :IN_AREA;

3.

Oracle® Rdb for OpenVMS

2.2.13 Partitioning Clause Not Working in Embedded SQL 54

 IN_AREA−>SQLVAR[0].SQLTYPE = SQLDA_CHAR;
 IN_AREA−>SQLVAR[0].SQLDATA = a_alert;
 OUT_AREA−>SQLVAR[0].SQLDATA = (char *)&i;

 EXEC SQL EXECUTE stmt2 into descriptor :OUT_AREA
 using descriptor :IN_AREA;

In this example, the second DESCRIBE sets IN_AREA−>SQLVAR[0].SQLTYPE to
SQLDA_VARCHAR. But overriding this value to SQLDA_CHAR causes dynamic SQL to
build a request that works. Again please note that when using SQLDA_CHAR, the data string
(a_alert in the example) must be space padded to the length specified in
IN_AREA−>SQLVAR[0].SQLLEN.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

Oracle® Rdb for OpenVMS

2.2.13 Partitioning Clause Not Working in Embedded SQL 55

2.3 RDO and RDML Errors Fixed

2.3.1 RDML /DATE_TYPE Qualifier Default is Now
NOEMPTY_RECORDS

RDML /PASCAL generates a record type for date items. This type is either an empty record or a
record composed of two longword elements depending on the value of the /DATE_TYPE qualifier
(EMPTY_RECORDS or NOEMPTY_RECORDS respectively). Earlier versions of the Pascal
compiler behaved as desired when empty records were used in assignments and fetches. More current
versions of the Pascal compiler give the following warning message when empty records are used for
dates:

%PASCAL−W−EMPTYVAR, Fetching an empty record with an explicit size
attribute may not yield expected results

Furthermore, statements flagged with the above warning frequently do not yield the desired result but
instead treat the record as having a zero length. Using the /DATE_TYPE=NOEMPTY_RECORD
qualifier avoids this problem.

In order to make RDML /PASCAL more usable, NOEMPTY_RECORDs has been made the default
value for the DATE_TYPE. Additionally, using an explicit /DATE_TYPE=EMPTY_RECORDS on
the RDML /PASCAL command line will now result in the following warning message being issued
by RDML:

%RDML−W−DATE_NOEMPTY, /DATE_TYPE=EMPTY_RECORDS specified;
use /DATE_TYPE=NOEMPTY_RECORDS

As a workaround, use /DATE_TYPE=NOEMPTY_RECORDS.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.3 RDO and RDML Errors Fixed 56

2.4 Oracle RMU Errors Fixed

2.4.1 RMU /COLLECT May Default to a READ WRITE
Transaction

Bug 2898115

When no transaction type is specified for the RMU/COLLECT OPTIMIZER_STATISTICS command,
RMU examines the database storage areas and if any storage area has snapshots disabled, a read write
transaction is used. If no storage areas have snapshots disabled, then a read only transaction is used.

Currently Rdb does not allow different areas on the same database to have snapshots enabled or
disabled. However, the attribute is recorded in the database root file against each storage area.

In previous versions, if a database had reserved and unused storage area slots, this check could
erroneously examine the unused storage area slots and conclude that areas on the database had
snapshots disabled. This could cause RMU to adopt a read write transaction as the default transaction
mode for RMU/COLLECT.

The following example shows RMU/COLLECT executing against a database with reserved storage
areas erroneously selecting a read write transaction. The example also shows the use of debug flags to
display the transaction modes used by the command.

$ DEFINE RDMS$SET_FLAGS TRANSACTION
$ RMU /COLLECT OPTIMIZER MF_PERSONNEL
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 1, db count=1
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Compile transaction (1) on db: 2
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_READ (read only)
~T Start_transaction (1) on db: 2, db count=1
~T Commit_transaction on db: 2
~T Prepare_transaction on db: 2
~T Compile transaction (1) on db: 3
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 3, db count=1
~T Commit_transaction on db: 3
~T Prepare_transaction on db: 3
~T Compile transaction (1) on db: 4
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 4, db count=1
~T Commit_transaction on db: 4
~T Prepare_transaction on db: 4

2.4 Oracle RMU Errors Fixed 57

The following example shows the corrected behaviour.

$ RMU /COLLECT OPTIMIZER MF_PERSONNEL /TRANS=READ_ONLY
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_READ (read only)
~T Start_transaction (1) on db: 1, db count=1
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Compile transaction (1) on db: 2
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_READ (read only)
~T Start_transaction (1) on db: 2, db count=1
~T Commit_transaction on db: 2
~T Prepare_transaction on db: 2
~T Compile transaction (1) on db: 3
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_READ (read only)
~T Start_transaction (1) on db: 3, db count=1
~T Commit_transaction on db: 3
~T Prepare_transaction on db: 3
~T Compile transaction (1) on db: 4
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 4, db count=1
~T Commit_transaction on db: 4
~T Prepare_transaction on db: 4

Note that the read write transaction at the end of the example is used to update information in the
metadata and is normal and required.

Specifying the transaction type on the command line by using the
/TRANSACTION_TYPE=READ_ONLY qualifier will avoid this problem.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.4.2 RMU/VERIFY/CONSTRAINTS Problems With Named
Tables And Constraints

Bug 3016789

Oracle Rdb V7.0 RMU/VERIFY/CONSTRAINTS verified all constraints even if a list of constraints
was specified. Oracle Rdb V7.1 RMU/VERIFY/CONSTRAINTS verified all constraints for all tables
even if a list of tables was specified. This behaviour has been corrected so that only constraints for a
specified list of tables or only the constraints specified will be verified.

The following example shows that for Oracle Rdb V7.0 RMU/VERIFY/CONSTRAINTS, all
constraints were verified even if a list of constraints was specified and that for Oracle Rdb V7.1
RMU/VERIFY/CONSTRAINTS, all constraints for all tables were verified even if a list of tables was
specified.

Oracle® Rdb for OpenVMS

2.4.2 RMU/VERIFY/CONSTRAINTS Problems With Named Tables And Constraints 58

$DEFINE RDMS$DEBUG_FLAGS "H"
$ rmu/show version
Executing RMU for Oracle Rdb V7.0−7
$ rmu/verify/constraint=(constraint=degrees_foreign2)/log mf_personnel
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−BGNVCONST, beginning verification of constraints for database
device:[directory]MF_PERSONNEL.RDB;1
~H Extension (VERIFY CONSTRAINTS) Item List: (len=0)
~H: ...verify constraint "WORK_STATUS_PRIMARY_STATUS_CODE"
~H: ...verify constraint "STATUS_NAME_VALUES"
~H: ...verify constraint "STATUS_TYPE_VALUES"
~H: ...verify constraint "EMPLOYEES_PRIMARY_EMPLOYEE_ID"
~H: ...verify constraint "EMP_SEX_VALUES"
~H: ...verify constraint "EMP_STATUS_CODE_VALUES"
~H: ...verify constraint "JOBS_PRIMARY_JOB_CODE"
~H: ...verify constraint "WAGE_CLASS_VALUES"
~H: ...verify constraint "DEPARTMENTS_PRIMARY1"
~H: ...verify constraint "JOB_HISTORY_FOREIGN1"
~H: ...verify constraint "JOB_HISTORY_FOREIGN2"
~H: ...verify constraint "JOB_HISTORY_FOREIGN3"
~H: ...verify constraint "SALARY_HISTORY_FOREIGN1"
~H: ...verify constraint "COLLEGES_PRIMARY_COLLEGE_CODE"
~H: ...verify constraint "DEGREES_FOREIGN1"
~H: ...verify constraint "DEGREES_FOREIGN2"
~H: ...verify constraint "DEG_DEGREE_VALUES"
~H: ...verify constraint "CANDIDATES_LAST_NAME_NOT_NULL"
~H: ...verify constraint "RESUMES_UNIQUE_EMPLOYEE_ID"
~H: ...verify constraint "RESUMES_FOREIGN1"
%RMU−I−ENDVCONST, completed verification of constraints for database
device:[directory]MF_PERSONNEL.RDB;1

$ rmu/show version
Executing RMU for Oracle Rdb V7.1−10
$ rmu/verify/constraint=(table=colleges)/log mf_personnel
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−BGNVCONST, beginning verification of constraints for database
device:[directory]MF_PERSONNEL.RDB;1
~H Extension (VERIFY CONSTRAINTS) Item List: (len=0)
~H: ...verify constraint "WORK_STATUS_PRIMARY_STATUS_CODE"
~H: ...verify constraint "STATUS_NAME_VALUES"
~H: ...verify constraint "STATUS_TYPE_VALUES"
~H: ...verify constraint "EMPLOYEES_PRIMARY_EMPLOYEE_ID"
~H: ...verify constraint "EMP_SEX_VALUES"
~H: ...verify constraint "EMP_STATUS_CODE_VALUES"
~H: ...verify constraint "JOBS_PRIMARY_JOB_CODE"
~H: ...verify constraint "WAGE_CLASS_VALUES"
~H: ...verify constraint "DEPARTMENTS_PRIMARY1"
~H: ...verify constraint "JOB_HISTORY_FOREIGN3"
~H: ...verify constraint "JOB_HISTORY_FOREIGN1"
~H: ...verify constraint "JOB_HISTORY_FOREIGN2"
~H: ...verify constraint "COLLEGES_PRIMARY_COLLEGE_CODE"
~H: ...verify constraint "DEGREES_FOREIGN1"
~H: ...verify constraint "DEGREES_FOREIGN2"
~H: ...verify constraint "DEG_DEGREE_VALUES"
~H: ...verify constraint "CANDIDATES_LAST_NAME_NOT_NULL"
~H: ...verify constraint "RESUMES_UNIQUE_EMPLOYEE_ID"
~H: ...verify constraint "RESUMES_FOREIGN1"
%RMU−I−ENDVCONST, completed verification of constraints for database
device:[directory]MF_PERSONNEL.RDB;1

Oracle® Rdb for OpenVMS

2.4.2 RMU/VERIFY/CONSTRAINTS Problems With Named Tables And Constraints 59

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.4.3 RMU Unload Incorrectly Using DBKEY SCOPE IS
ATTACH

Bug 2623790

In prior releases of Oracle Rdb V7.0, it was possible that RMU Unload would default to DBKEY
SCOPE IS ATTACH. This problem has been corrected in Oracle Rdb Release 7.0.7.1.

This problem occurs when applications attach to the Rdb database without a database parameter block
(DPB). This can be determined by defining RDMS$SET_FLAGS "DATABASE" prior to running the
application or RMU command.

A typical attach to the database will display lines describing the explicitly set "Database Parameter
Buffer" including the DBKEY SCOPE.

$ SQL$
SQL> attach 'filename SCRATCH';
 ATTACH #1, Database DISK3:[DATABASES.V71]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=78)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK1:[DIR]SQL$71.EXE;1"
003F (00063) RDB$K_FACILITY_ALL
0040 (00064) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0044 (00068) RDB$K_FACILITY_ALL
0045 (00069) RDB$K_DPB2_REQUEST_SCOPE (Attach)
0049 (00073) RDB$K_FACILITY_RDB_VMS
004A (00074) RDB$K_DPB2_CDD_MAINTAINED (No)
 RDMS$BIND_WORK_FILE = "DISK2:[TEST]RDMSTTBL$KMCMLSDFBXK.TMP;" (Visible = 0)

In the case of RMU Unload, this buffer is absent and defaults should be used. Unfortunately, the
DBKEY SCOPE is undefined and is being incorrectly set to DBKEY SCOPE IS ATTACH.

$ RMU /Unload SCRATCH
 ATTACH #1, Database DISK3:[DATABASES.V71]SCRATCH.RDB;1
 RDMS$BIND_WORK_FILE = "DISK2:[TEST]RDMSTTBL$KMY10MNHBXK.TMP;" (Visible = 0)

It is possible that other applications or 4GL tools suffer from this problem also. It can be confirmed
using RDMS$SET_FLAGS as shown here, or using the RMU/SHOW STATISTICS command to see
if any process is waiting for the lock "waiting for database key scope" in the Active User Stall
Messages screen.

Oracle® Rdb for OpenVMS

2.4.3 RMU Unload Incorrectly Using DBKEY SCOPE IS ATTACH 60

2.5 LogMiner Errors Fixed

2.5.1 LogMiner Elimination of Processing Unneeded AIJ
Files

By default, after−image journal files are processed in the order that they are presented to the RMU
UNLOAD AFTER_JOURNAL command. The ORDER_AIJ_FILES qualifier specifies that the input
after−image journal files are to be processed in ascending order by sequence number. This can be of
benefit when you use wildcard (* or %) processing of a number of input files. The .AIJ files are each
opened, the first block is read (to determine the sequence number), and the files are closed prior to the
sorting operation.

The /RESTART=restart−point qualifier can be used to specify an AIJ Extract Restart Control Point
(AERCP) that indicates the location to begin the extraction. The AERCP indicates the transaction
sequence number (TSN) of the last extracted transaction along with a location in the .AIJ file where a
known "Micro−quiet point" exists.

When the Restart qualifier is not specified and no input after−image journal files are specified on the
command line, the Continuous LogMiner process starts extracting at the beginning of the earliest
modified online after−image journal file.

Previously, all specified input after−image journal files were always processed. This behaviour has
been altered when both the RESTART and ORDER_AIJ_FILES qualifiers are specified. In this
situation, any after−image journal files containing only sequence numbers prior to the "Micro−quiet
point" sequence number (indicated in the AIJ Extract Restart Control Point (AERCP)) can be
eliminated from processing after the order of sequence numbers has been determined by the sort
operation. Eliminating the unneeded after−image journal files can speed the restart operation.

2.5.2 /TRANSACTION_TYPE Qualifier for RMU /UNLOAD
/AFTER_JOURNAL

The RMU /UNLOAD /AFTER_JOURNAL command would start either a read−write or a read−only
transaction to read the database metadata. A read−only transaction would be started if the database
was set to "SNAPSHOTS ARE IMMEDIATE"; otherwise a read−write transaction would be started.

The qualifier "/TRANSACTION_TYPE=" has been added to the RMU /UNLOAD
/AFTER_JOURNAL command to allow explicit control over the transaction type used when reading
the database metadata.

The following keywords may be specified to the "/TRANSACTION_TYPE=" qualifier.

AUTOMATIC − The transaction type will depend upon the current database settings for
snapshots (enabled, deferred, or disabled), transaction modes available to this user, and the
standby status of this database.

♦

READ_ONLY − Starts a READ ONLY transaction.♦
WRITE − Starts a READ WRITE transaction.♦
ISOLATION_LEVEL − The transaction isolation level. It accepts the following keywords:♦

2.5 LogMiner Errors Fixed 61

READ_COMMITTED◊
REPEATABLE_READ◊
SERIALIZABLE◊

Please refer to the Oracle Rdb7 SQL Reference Manual under the SET TRANSACTION
statement for a complete description of these isolation levels.
WAIT − Will wait indefinitely on a locked resource.♦
WAIT=n − This instructs Rdb to wait 'n' seconds before aborting the wait and the RMU
session. Specifying a wait timeout interval of zero (0) is equivalent to specifying NOWAIT.

♦

NOWAIT − Will not wait on locked resources.♦
If the qualifier /TRANSACTION_TYPE is omitted or specified with no options, then the default is
/TRANSACTION_TYPE=(AUTOMATIC, WAIT).

Although a WRITE transaction is started on the database, RMU /UNLOAD /AFTER_JOURNAL
does not attempt to write to the database tables.

Oracle® Rdb for OpenVMS

2.5 LogMiner Errors Fixed 62

2.6 RMU Show Statistics Errors Fixed

2.6.1 RMU /SHOW STATISTICS Writes Invalid Configuration
File

Bug 3108571

Starting in Oracle Rdb Release 7.0.6.3, the RMU /SHOW STATISICS utility could write an invalid
line to a save configuration file. In particular, the "CHECKPOINT_TX" line would be omitted and
the line containing "CHECKPOINT_BLOCK_COUNT" would be corrupted.

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

2.6 RMU Show Statistics Errors Fixed 63

2.7 Hot Standby Errors Fixed

2.7.1 Starting LRS on Master Database Caused Shutdown

Bug 1775983

If a database administrator attempted to start the Hot Standby feature and mistakenly specified the
master database as the standby database then the master database was shutdown.

For example, note that in the following command the /MASTER qualifier is being used against the
master database. This causes Hot Standby to attempt to configure the master database as a standby
database.

$ RMU /REPLICATE AFTER_JOURNAL START [.MASTER]mf_personnel −
 /MASTER_ROOT=[.STANDBY]standby_personnel

When the above command was issued, the AIJ Log Roll−forward Server (LRS) failed with the
following error:

RDMS−F−STBYDBINUSE, standby database cannot be
exclusively accessed for replication

Whenever the LRS failed, the database was automatically shutdown. A running application could be
accidentally shutdown due to this type of command error.

This problem has been corrected in Oracle Rdb Release 7.0.7.1. Now, if the LRS fails with a
STBYDBINUSE error, the database is not shutdown.

2.7 Hot Standby Errors Fixed 64

Chapter 3
Enhancements

Chapter 3Enhancements 65

3.1 Enhancements Provided in Oracle Rdb
Release 7.0.7.1

3.1.1 RDM$BIND_SNAP_QUIET_POINT Logical No Longer
Used

Bug 2656534

If the logical RDM$BIND_SNAP_QUIET_POINT was defined to be "0" on a system that was used
for the standby database in a Hot Standby configuration, it was not possible to start database
replication. Attempts to start replication would fail with:

RDMS−F−HOTSNAPQUIET, quiet points must be enabled
for snapshot transactions during hot standby replication

However, defining the logical to "1" can cause processes with long running READ ONLY
transactions to prevent database backups from proceeding.

This logical was introduced in Oracle Rdb Release 6.0 to allow database administrators to override
the 6.0 requirement that READ ONLY transactions hold the quiet−point lock. Defining the logical to
"1" (the default) would provide better performance when the Fast Commit feature was enabled and
processes frequently switched between READ ONLY and READ WRITE transactions. Since that
time, improvements have been made to the quiet−point lock algorithms that make this logical no
longer necessary. Since releases 7.0.6.3 and 7.1.0.1, READ ONLY transactions would continue to
hold the quiet−point lock until a backup process requested the lock. When the lock was requested,
READ ONLY processes would release the quiet point lock as soon as the currently executing
database request finished, if the RDM$BIND_SNAP_QUIET_POINT logical was defined as "0".
This made it no longer necessary to have the logical defined as "1".

Since the quiet−point lock behavior now behaves optimally, even with the Fast Commit feature
enabled, the RDM$BIND_SNAP_QUIET_POINT logical is no longer needed and thus has been
removed. Oracle Rdb will now behave as if the logical is always defined to be "0".

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

3.1.2 Determining Which Oracle Rdb Options Are Installed

When installing Oracle Rdb Server on OpenVMS you can choose from five components to install:

Oracle Rdb1.
Programmer for Rdb (Rdb Compilers)2.
Hot Standby3.
Power Utilities4.
Common Components5.

Starting with Rdb 7.0, you can determine what Rdb options were selected during the installation of
Rdb by running the program SYS$SYSTEM:RDBINS<RdbVersionVariant>.EXE. For example:

$ RUN SYS$SYSTEM:RDBINS70

3.1 Enhancements Provided in Oracle Rdb Release 7.0.7.1 66

Installed: Oracle Rdb,Rdb Compilers,Hot Standby,Power Utilities

Previously, however, the output of the RDBINS program could not easily be redirected. Attempts to
redefine SYS$OUTPUT would not allow the program output to be captured.

This problem has been resolved. The RDBINS program now allows redirection of the output to
SYS$OUTPUT. The RDBINS program also creates a DCL symbol
RDB$INSTALLED_SELECTIONS containing the same output string as is displayed to
SYS$OUTPUT.

3.1.3 New Procedure RDB$IMAGE_VERSIONS.COM

The command procedure RDB$IMAGE_VERSIONS.COM is supplied in SYS$LIBRARY by the
Rdb installation procedure. The RDB$IMAGE_VERSIONS command procedure can be used to
display the image identification string and image link date/time from various Oracle Rdb or
potentially related images in SYS$SYSTEM, SYS$LIBRARY and SYS$MESSAGE. This procedure
can be used to determine exactly what images are installed on the system.

RDB$IMAGE_VERSIONS.COM accepts an optional parameter. If passed, this parameter specifies a
specific file or wildcard to lookup and display information for. By default, filenames starting with
RD*, SQL*, RM*, and COSI* and ending with .EXE are searched for and displayed.

The following example shows how to use the RDB$IMAGE_VERSIONS command procedure.

Decrdb RTA1:> @RDB$IMAGE_VERSIONS
SYS$SYSROOT:[SYSEXE]RDB$NATCONN71.EXE;1 SQL*NET V7.1−55 8−MAY−2002 15:56
SYS$COMMON:[SYSEXE]RDBINS.EXE;4 ORACLE RDB V7.0 14−NOV−2002 17:20
SYS$COMMON:[SYSEXE]RDBINS70.EXE;33 ORACLE RDB V7.0 7−MAR−2003 15:30
SYS$COMMON:[SYSEXE]RDBINS71.EXE;5 ORACLE RDB V7.1 9−APR−2003 10:58
SYS$COMMON:[SYSEXE]RDBPRE.EXE;5 V7.0−65 10−SEP−2002 16:02
SYS$COMMON:[SYSEXE]RDBPRE70.EXE;37 V7.0−7 28−FEB−2003 23:24
SYS$COMMON:[SYSEXE]RDBPRE71.EXE;5 V7.1−101 8−APR−2003 16:49
SYS$COMMON:[SYSEXE]RDBSERVER.EXE;9 RDB/RSV V7.0−65 5−SEP−2002 21:01
SYS$COMMON:[SYSEXE]RDBSERVER70.EXE;41 RDB/RSV V7.0−7 27−FEB−2003 17:29
SYS$COMMON:[SYSEXE]RDBSERVER71.EXE;5 RDB/RSVV7.1−101 7−APR−2003 17:43
SYS$COMMON:[SYSEXE]RDMABS.EXE;5 RDB V7.0−65 10−SEP−2002 16:01
 .
 .
 .

Oracle® Rdb for OpenVMS

3.1.3 New Procedure RDB$IMAGE_VERSIONS.COM 67

Chapter 4
Documentation Corrections
This chapter provides information not currently available in the Oracle Rdb documentation set.

Chapter 4Documentation Corrections 68

4.1 Documentation Corrections

4.1.1 Waiting for Client Lock Message

The Oracle Rdb7 Guide to Database Performance and Tuning contains a section in Chapter 3 that
describes the Performance Monitor Stall Messages screen. The section contains a list describing the
"Waiting for" messages. The description of the "waiting for client lock" message was missing from
the list.

A client lock indicates that an Rdb metadata lock is in use. The term client indicates that Rdb is a
client of the Rdb locking services. The metadata locks are used to guarantee memory copies of the
metadata (table, index and column definitions) are consistent with the on−disk versions.

The "waiting for client lock" message means the database user is requesting an incompatible locking
mode. For example, when trying to drop a table which is in use, the drop operation requests a
PROTECTED WRITE lock on the metadata object (such as a table) which is incompatible with the
existing PROTECTED READ lock currently used by others of the table.

These metadata locks consist of three longwords. The lock is displayed in text format first, followed
by its hexadecimal representation. The text version masks out non−printable characters with a dot (.).

The leftmost value seen in the hexadecimal output contains the id of the object. The id is described
below for tables and views, functions, procedures, and modules.

For tables and views, the id represents the unique value found in the RDB$RELATION_ID
column of the RDB$RELATIONS system relation for the given table.

♦

For routines, the id represents the unique value found in the RDB$ROUTINE_ID column of
the RDB$ROUTINES system relation for the given routine.

♦

For modules, the id represents the unique value found in the RDB$MODULE_ID column of
the RDB$MODULES system relation for the given module.

♦

The next value displayed signifies the object type. The following table describes objects and their
hexadecimal type values.

Table 4−1 Objects and Their Hexadecimal Type Value

Object Hexadecimal Value

Tables or views 00000004

Routines 00000016

Modules 00000015

The last value in the hexadecimal output represents the lock type. The value 55 indicates this is a
client lock.

The following example shows a "waiting for client lock" message from a Stall Messages screen:

Process.ID Since...... Stall.reason............................. Lock.ID.
46001105:2 10:40:46.38 − waiting for client '........' 000000190000000400000055

4.1 Documentation Corrections 69

To determine the name of the referenced object given the lock ID, the following queries can be used
based on the object type:

SQL> select RDB$RELATION_NAME from RDB$RELATIONS where RDB$RELATION_ID = 25;
SQL> select RDB$MODULE_NAME from RDB$MODULES where RDB$MODULE_ID = 12;
SQL> select RDB$ROUTINE_NAME from RDB$ROUTINES where RDB$ROUTINE_ID = 7;

Because the full client lock output is long, it may require more space than is allotted for the
Stall.reason column and therefore can be overwritten by the Lock.ID. column output.

For more detailed lock information, perform the following steps:

Press the L option from the horizontal menu to display a menu of lock IDs.♦
Select the desired lock ID.♦

4.1.2 Clarification of PREPARE Statement Behavior

Bug 2581863

According to the Oracle Rdb7 SQL Reference Manual, Volume 3 page 7−227, when using a
statement−id parameter for PREPARE "if that parameter is an integer, then you must explicitly
initialize that integer to zero before executing the PREPARE statement".

This description is not correct and should be replaced with this information:

If the statement−id is non−zero and does not match any prepared statement (the id was stale
or contained a random value), then an error is raised:
%SQL−F−BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not
prepared

1.

If the statement−id is non−zero, or the statement name is one that has previously been used
and matches an existing prepared statement, then that statement is automatically released
prior to the prepare of the new statement. Please refer to the RELEASE statement for further
details.

2.

If the statement−id is zero or was automatically released, then a new statement−id is allocated
and the statement prepared.

3.

Please note that if you use statement−name instead of a statement−id−parameter then SQL will
implicitly declare an id for use by the application. Therefore, the semantics described apply similarly
when using the statement−name. See the RELEASE statement for details.

4.1.3 SQL EXPORT Does Not Save Some Database
Attributes

Bug 2574640

The SQL EXPORT and IMPORT commands do not support several database attributes.

The following attributes are not saved by EXPORT for this release of Oracle Rdb.

CHECKPOINT TIMED EVERY n SECONDS♦
CHECKPOINT { ALL | UPDATED } ROWS TO { BACKING FILE | DATABASE }♦

Oracle® Rdb for OpenVMS

4.1.2 Clarification of PREPARE Statement Behavior 70

RMU/SET LOGMINER♦
This problem has been corrected in Oracle Rdb Release 7.1. The EXPORT protocol has been
extended to support these and other database attributes. If you have databases with these attributes
enabled then after the IMPORT completes, use a SQL script to re−establish the settings for the new
database.

4.1.4 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides
the Database Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to determine the lock
timeout interval for that transaction. Those values are:

The value specified in the SET TRANSACTION statement1.
The value stored in the database as specified in CREATE or ALTER DATABASE2.
The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL3.

The timeout interval for a transaction is the smaller of the value specified in the SET
TRANSACTION statement and the value specified in CREATE DATABASE. However, if the
logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL is defined, the value of this logical name
overrides the value specified in CREATE DATABASE.

The description of how these three values interact, found in several different parts of the Rdb
documentation set, is incorrect and will be replaced by the description above.

The lock timeout value in the database can be dynamically modified from the Locking Dashboard in
RMU/SHOW STATISTICS. The Per−Process Locking Dashboard can be used to dynamically
override the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL for one or more processes.

4.1.5 New Request Options for RDO, RDBPRE and
RDB$INTERPRET

This release note was included in the V70A Release Notes but had gotten dropped somewhere along
the line.

For this release of Rdb, two new keywords have been added to the handle−options for the
DECLARE_STREAM, the START_STREAM (undeclared format) and FOR loop statements. These
changes have been made to RDBPRE, RDO and RDB$INTERPRET at the request of several RDO
customers.

In prior releases, the handle−options could not be specified in interactive RDO or
RDB$INTERPRET. This has changed in Rdb but these allowed options will be limited to MODIFY
and PROTECTED keywords. For RDBPRE, all options listed will be supported. These option names
were chosen to be existing keywords to avoid adding any new keywords to the RDO language.

The altered statements are shown in Example 5−1, Example 5−2 and Example 5−3.

Example 5−1 DECLARE_STREAM Format

Oracle® Rdb for OpenVMS

4.1.4 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter 71

Example 5−2 START_STREAM Format

Example 5−3 FOR Format

Each of these statements references the syntax for the HANDLE−OPTIONS which has been revised
and is shown below.

The following options are available for HANDLE−OPTIONS:

REQUEST_HANDLE specifies the request handle for this request. This option is only valid
for RDBPRE and RDML applications. It cannot be used with RDB$INTERPRET, nor
interactive RDO.

♦

TRANSACTION_HANDLE specifies the transaction handle under which this request
executes. This option is only valid for RDBPRE and RDML applications. It cannot be used
with RDB$INTERPRET, nor interactive RDO.

♦

MODIFY specifies that the application will modify all (or most) records fetched from the
stream or for loop. This option can be used to improve application performance by avoiding
lock promotion from SHARED READ for the FETCH to PROTECTED WRITE access for

♦

Oracle® Rdb for OpenVMS

4.1.4 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter 72

the nested MODIFY or ERASE statement. It can also reduce DEADLOCK occurrence
because lock promotions are avoided.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This option is
not currently available for RDML.
For example:

 RDO> FOR (MODIFY) E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
 cont> MODIFY E USING E.MIDDLE_INITIAL = "M"
 cont> END_MODIFY
 cont> END_FOR

This FOR loop uses the MODIFY option to indicate that the nested MODIFY is an
unconditional statement and so aggressive locking can be undertaken during the fetch of the
record in the FOR loop.
PROTECTED specifies that the application may modify records fetched by this stream by a
separate and independent MODIFY statement. Therefore, this stream should be protected
from interference (aka Halloween affect). The optimizer will select a snapshot of the rows
and store them in a temporary relation for processing, rather than traversing indexes at the
time of the FETCH statement. In some cases this may result in poorer performance when the
temporary relation is large and overflows from virtual memory to a temporary disk file, but
the record stream will be protected from interference. The programmer is directed to the
documentation for the Oracle Rdb logical names RDMS$BIND_WORK_VM and
RDMS$BIND_WORK_FILE.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This option is
not currently available for RDML.
The following example creates a record stream in a BASIC program using Callable RDO:

 RDMS_STATUS = RDB$INTERPRET ('INVOKE DATABASE PATHNAME "PERSONNEL"')

 RDMS_STATUS = RDB$INTERPRET ('START_STREAM (PROTECTED) EMP USING ' + &
 'E IN EMPLOYEES')

 RDMS_STATUS = RDB$INTERPRET ('FETCH EMP')

 DML_STRING = 'GET ' + &
 '!VAL = E.EMPLOYEE_ID;' + &
 '!VAL = E.LAST_NAME;' + &
 '!VAL = E.FIRST_NAME' + &
 'END_GET'

 RDMS_STATUS = RDB$INTERPRET (DML_STRING, EMP_ID, LAST_NAME, FIRST_NAME)

In this case the FETCH needs to be protected against MODIFY statements which execute in
other parts of the application.

♦

4.1.6 Missing Descriptions of RDB$FLAGS from HELP File

The HELP file for Oracle Rdb Release 7.0 describes the system tables for Oracle Rdb and was
missing these updated descriptions of the RDB$FLAGS column for several tables.

Oracle® Rdb for OpenVMS

4.1.6 Missing Descriptions of RDB$FLAGS from HELP File 73

Table 4−2 Changed Columns for RDB$INDICES Table

Column
Name

Data
Type

Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following meaning
when set:

Bit 0: This index is of type HASHED.

Bit 1: This index uses the MAPPING VALUES clause to
compress integer value ranges.

Bit 2: If this is a HASHED index then it is of type
ORDERED. If clear this indicates the index is of type
SCATTERED.

Bit 3: Reserved for future use.

Bit 4: This index has run length compression enabled
(ENABLE COMPRESSION).

Bit 5: This index is no longer used (MAINTENANCE IS
DISABLED).

Bit 6 through 10: Reserved for future use.

Bit 11: This index has duplicates compressed
(DUPLICATES ARE COMPRESSED).

Bit 12: This index is of type SORTED RANKED.

Bits 13 through 31: Reserved for future use.

Table 4−3 Changed Columns for RDB$RELATIONS Table

Column Name
Data
Type

Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following meaning
when set:

Bit 0: This relation is a view.

Bit 1: This relation is not compressed.

Bit 2: The SQL clause, WITH CHECK OPTION, is used
in this view definition.

Bit 3: Indicates a special internal system relation.

Bit 4: This view is not an ANSI updatable view.

Bit 5: This is an imported table in the Distributed Option
for Rdb catalog.

Bit 6: This is a passthru table in the Distributed Option for
Rdb catalog.

Bit 7: This is a partitioned view in the Distributed Option
for Rdb catalog.

Bit 8: This table has compression defined by the storage
map. When set Bit 1 in this bit mask is ignored.

Bit 9: This is a temporary table.

Oracle® Rdb for OpenVMS

4.1.6 Missing Descriptions of RDB$FLAGS from HELP File 74

Bit 10: When bit 9 is set this is a global temporary table,
when clear it indicates a local temporary table.

Bit 11: When bit 9 is set this indicates that the rows in the
temporary table should be deleted upon COMMIT.

Bit 12: Reserved for future use.

Bit 13: A table (via a computed by column) or view
references a local temporary table.

Bit 14: Reserved for future use.

Bit 15: This is a system table with a special storage map.

Bits 16 through 31: Reserved for future use.

Table 4−4 Changed Columns for RDB$STORAGE_MAPS Table

Column Name
Data
Type

Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following meaning
when set:

Bit 0: This table or index is mapped to page format
MIXED areas.

Bit 1: This partition is not compressed.

Bit 2: This is a strictly partitioned storage map, the
partitioning columns become read only for UPDATE.

Bit 3 through 31: Reserved for future use.

4.1.7 A Way to Find the Transaction Type of a Particular
Transaction Within the Trace Database

The table EPC$1_221_TRANSACTION in the formatted Oracle Trace database has a column
LOCK_MODE_START of longword datatype. The values of this column indicate the type of
transaction a particular transaction was.

Value Transaction type
−−−−− −−−−−−−−−−−−−−−−
8 Read only
9 Read write
14 Batch update

4.1.8 Clarification of SET FLAGS Option
DATABASE_PARAMETERS

Bug 1668049

The Oracle Rdb7 SQL Reference Manual describes the option DATABASE_PARAMETERS in
Table 7−6 in the SET FLAGS section. However, this keyword generates output only during

Oracle® Rdb for OpenVMS

4.1.7 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database 75

ATTACH to the database which happens prior to the SET FLAGS statement executing.

This option is therefore only useful when used with the RDMS$SET_FLAGS logical name which
provides similar functionality.

$ define RDMS$SET_FLAGS "database_parameters"
$ sql$
SQL> Attach 'File db$:scratch';
 ATTACH #1, Database BLUGUM$DKA300:[SMITHI.DATABASES.V70]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"
0040 (00064) RDB$K_FACILITY_ALL
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0045 (00069) RDB$K_FACILITY_ALL
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)
004A (00074) RDB$K_FACILITY_RDB_VMS
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)
 RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0)
SQL> Exit
 DETACH #1

4.1.9 Additional Information About Detached Processes

Oracle Rdb documentation omits necessary detail on running Oracle Rdb from a detached process.

Applications run from a detached process must ensure that the OpenVMS environment is established
correctly before running Oracle Rdb. Otherwise, Oracle Rdb will not execute.

Attempts to attach to a database and execute an Oracle Rdb query from applications running as
detached processes will result in an error similar to the following:

%RDB−F−SYS_REQUEST, error from system services request
−SORT−E−OPENOUT, error opening {file} as output
−RMS−F−DEV, error in device name or inappropriate device type for
operation

The problem occurs because a detached process does not normally have the logical names
SYS$LOGIN or SYS$SCRATCH defined.

There are two methods that can be used to correct this:

Use the DCL command procedure RUN_PROCEDURE to run the ACCOUNTS application:
RUN_PROCEDURE.COM includes the single line:

$ RUN ACCOUNTS_REPORT

Then execute this procedure using this command:

$ RUN/DETACH/AUTHORIZE SYS$SYSTEM:LOGINOUT/INPUT=RUN_PROCEDURE

1.

Oracle® Rdb for OpenVMS

4.1.9 Additional Information About Detached Processes 76

This solution executes SYS$SYSTEM:LOGINOUT so that the command language interface
(DCL) is activated. This causes the logical names SYS$LOGIN and SYS$SCRATCH to be
defined for the detached process. The /AUTHORIZE qualifier also ensures that the users'
process quota limits (PQLs) are used from the system authorization file rather than relying on
the default PQL system parameters, which are often insufficient to run Oracle Rdb.
If DCL is not desired, and SYS$LOGIN and SYS$SCRATCH are not defined, then prior to
executing any Oracle Rdb statement, you should define the following logical names:

RDMS$BIND_WORK_FILE
Define this logical name to allow you to reduce the overhead of disk I/O operations
for matching operations when used in conjunction with the
RDMS$BIND_WORK_VM logical name. If the virtual memory file is too small,
then overflow to disk will occur at the disk and directory location specified by
RDMS$BIND_WORK_FILE.
For more information on RDMS$BIND_WORK_FILE and
RDMS$BIND_WORK_VM, see the Oracle Rdb Guide to Database Performance and
Tuning.

◊

SORTWORK0, SORTWORK1, and so on
The OpenVMS sort/merge utility (SORT/MERGE) attempts to create sort work files
in SYS$SCRATCH. If the SORTWORK logical names exist, the utility will not
require the SYS$SCRATCH logical. However, note that not all queries will require
sorting, and that some sorts will be completed in memory and so will not necessarily
require disk space.
If you use the logical RDMS$BIND_SORT_WORKFILES, you will need to define
further SORTWORK logical names as described in the Oracle Rdb Guide to
Database Performance and Tuning.

◊

2.

You should also verify that sufficient process quotas are specified on the RUN/DETACH command line, or
defined as system PQL parameters to allow Oracle Rdb to execute.

4.1.10 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate query can interfere
with the retrieval of the cursor by modifying the index column's key values used by the cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= 'M', it is likely that the query will
use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an update occurs during the
processing of the cursor which changes the LAST_NAME of an employee from "Mason" to "Rickard", then it
is possible that that employee row will be processed twice. First, when it is fetched with name "Mason", and
then later when it is accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies which optimize the
I/O requirements, such as Index Retrieval, can be subject to this problem. Interference from queries by other
sessions are avoided by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For example, if the
SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates of target rows, or if the
RDO/RDML MODIFY statement uses the context variable for the stream. Then the optimizer will choose an
alternate access strategy if an update can occur which may cause the Halloween problem. This can be seen in

Oracle® Rdb for OpenVMS

4.1.10 The Halloween Problem 77

the access strategy in the example below as a "Temporary relation" being created to hold the result of the
cursor query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or DELETE ... WHERE
CURRENT OF statements will not be seen until after the cursor is declared and opened. In these
environments, you must use the FOR UPDATE clause to specify that columns selected by the cursor will be
updated during cursor processing. This is an indication to the Rdb optimizer so that it protects against the
Halloween problem in this case. This is shown in the two examples below Example 4−1 and Example 4−2.

Example 4−1 shows that the EMP_LAST_NAME index is used for retrieval. Any update performed will
possibly be subject to the Halloween problem.

Example 4−1 Interactive Cursor with no Halloween Protection

SQL> set flags 'strategy';
SQL> declare emp cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp;

Example 4−2 shows that the query specifies that the column LAST_NAME will be updated by some later
query. Now the optimizer protects the EMP_LAST_NAME index used for retrieval by using a "Temporary
Relation" to hold the query result set. Any update performed on LAST_NAME will now avoid the Halloween
problem.

Example 4−2 Interactive Cursor with Halloween Protection

SQL> set flags 'strategy';
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name
cont> for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp2;

When you use the SQL precompiler or the SQL module language compiler, it can be determined from usage
that the cursor context will possibly be updated during the processing of the cursor because all cursor related
statements are present within the module. This is also true for the RDML/RDBPRE precompilers when you
use the DECLARE_STREAM and START_STREAM statements and use the same stream context to perform
all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or RDO stream),
not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor, then the actual
rows fetched will depend upon the access strategy chosen by the Rdb optimizer. As the query is separate from
the cursors query (i.e. doesn't reference the cursor context) then the optimizer does not know that the cursor

Oracle® Rdb for OpenVMS

4.1.10 The Halloween Problem 78

selected rows are potentially updated and so can not perform the normal protection against the Halloween
problem.

4.1.11 RDM$BIND_MAX_DBR_COUNT Documentation
Clarification

Bug 1495227

The Rdb7 Guide to Database Performance and Tuning Manual, Volume 2, Page A−18, incorrectly describes
the use of the RDM$BIND_MAX_DBR_COUNT logical.

Following is an updated description. Note that the difference in actual behavior between what is in the
existing documentation and software is that the logical name only controls the number of database recovery
processes created at once during "node failure" recovery (that is, after a system or monitor crash or other
abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system failure), the database will
have to be recovered in a "node failure" recovery mode. This recovery will be performed by another monitor
in the cluster if the database is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_DBR_COUNT
configuration parameter define the maximum number of database recovery (DBR) processes to be
simultaneously invoked by the database monitor during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do not have global buffers
enabled. Databases that utilize global buffers have only one recovery process started at a time during a "node
failure" recovery.

In a "node failure" recovery situation with the Row Cache feature enabled (regardless of the global buffer
state), the database monitor will start a single database recovery (DBR) process to recover the Row Cache
Server (RCS) process and all user processes from the oldest active checkpoint in the database.

4.1.12 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector
Clarification

Each output record from the RMU /UNLOAD /AFTER_JOURNAL command includes a vector (array) of
bits. There is one bit for each field in the data record. If a null bit value is 1, the corresponding field is NULL;
if a null bit value is 0, the corresponding field is not NULL and contains an actual data value. The contents of
a data field that is NULL are not initialized and are not predictable.

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN indicates the number of valid
bits (and thus, the number of columns in the table). Any extra bits in the final byte of the vector after the final
null bit are unused and the contents are unpredictable.

The following example C program demonstrates one possible way of reading and parsing a binary output file
(including the null bit vector) from the RMU /UNLOAD /AFTER_JOURNAL command. This sample
program has been tested using Oracle Rdb V7.0.5 and HP C V6.2−009 on OpenVMS Alpha V7.2−1. It is
meant to be used as a template for writing your own program.

Oracle® Rdb for OpenVMS

4.1.11 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 79

/* DATATYPES.C */

#include <stdio.h>
#include <descrip.h>
#include <starlet.h>
#include <string.h>

#pragma member_alignment __save
#pragma nomember_alignment

struct { /* Database key structure */
 unsigned short lno; /* line number */
 unsigned int pno; /* page number */
 unsigned short dbid; /* area number */
 } dbkey;

typedef struct { /* Null bit vector with one bit for each column */
 unsigned n_tinyint :1;
 unsigned n_smallint :1;
 unsigned n_integer :1;
 unsigned n_bigint :1;
 unsigned n_double :1;
 unsigned n_real :1;
 unsigned n_fixstr :1;
 unsigned n_varstr :1;
 } nbv_t;

struct { /* LogMiner output record structure for table DATATYPES */
 char rdb$lm_action;
 char rdb$lm_relation_name [31];
 int rdb$lm_record_type;
 short rdb$lm_data_len;
 short rdb$lm_nbv_len;
 __int64 rdb$lm_dbk;
 __int64 rdb$lm_start_tad;
 __int64 rdb$lm_commit_tad;
 __int64 rdb$lm_tsn;
 short rdb$lm_record_version;
 char f_tinyint;
 short f_smallint;
 int f_integer;
 __int64 f_bigint;
 double f_double;
 float f_real;
 char f_fixstr[10];
 short f_varstr_len; /* length of varchar */
 char f_varstr[10]; /* data of varchar */
 nbv_t nbv;
 } lm;

#pragma member_alignment __restore

main ()
{ char timbuf [24];
 struct dsc$descriptor_s dsc = {
 23, DSCK_DTYPE_T, DSCK_CLASS_S, timbuf};
 FILE *fp = fopen ("datatypes.dat", "r", "ctx=bin");

 memset (&timbuf, 0, sizeof(timbuf));

Oracle® Rdb for OpenVMS

4.1.11 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 80

 while (fread (&lm, sizeof(lm), 1, fp) != 0)
 {
 printf ("Action = %c\n", lm.rdb$lm_action);
 printf ("Table = %.*s\n", sizeof(lm.rdb$lm_relation_name),
 lm.rdb$lm_relation_name);
 printf ("Type = %d\n", lm.rdb$lm_record_type);
 printf ("Data Len = %d\n", lm.rdb$lm_data_len);
 printf ("Null Bits = %d\n", lm.rdb$lm_nbv_len);

 memcpy (&dbkey, &lm.rdb$lm_dbk, sizeof(lm.rdb$lm_dbk));
 printf ("DBKEY = %d:%d:%d\n", dbkey.dbid,
 dbkey.pno,
 dbkey.lno);

 sys$asctim (0, &dsc, &lm.rdb$lm_start_tad, 0);
 printf ("Start TAD = %s\n", timbuf);

 sys$asctim (0, &dsc, &lm.rdb$lm_commit_tad, 0);
 printf ("Commit TAD = %s\n", timbuf);

 printf ("TSN = %Ld\n", lm.rdb$lm_tsn);
 printf ("Version = %d\n", lm.rdb$lm_record_version);

 if (lm.nbv.n_tinyint == 0)
 printf ("f_tinyint = %d\n", lm.f_tinyint);
 else printf ("f_tinyint = NULL\n");

 if (lm.nbv.n_smallint == 0)
 printf ("f_smallint = %d\n", lm.f_smallint);
 else printf ("f_smallint = NULL\n");

 if (lm.nbv.n_integer == 0)
 printf ("f_integer = %d\n", lm.f_integer);
 else printf ("f_integer = NULL\n");

 if (lm.nbv.n_bigint == 0)
 printf ("f_bigint = %Ld\n", lm.f_bigint);
 else printf ("f_bigint = NULL\n");

 if (lm.nbv.n_double == 0)
 printf ("f_double = %f\n", lm.f_double);
 else printf ("f_double = NULL\n");

 if (lm.nbv.n_real == 0)
 printf ("f_real = %f\n", lm.f_real);
 else printf ("f_real = NULL\n");

 if (lm.nbv.n_fixstr == 0)
 printf ("f_fixstr = %.*s\n", sizeof (lm.f_fixstr),
 lm.f_fixstr);
 else printf ("f_fixstr = NULL\n");

 if (lm.nbv.n_varstr == 0)
 printf ("f_varstr = %.*s\n", lm.f_varstr_len, lm.f_varstr);
 else printf ("f_varstr = NULL\n");

 printf ("\n");
 }
}

Example sequence of commands to create a table, unload the data and display the contents with this program:

Oracle® Rdb for OpenVMS

4.1.11 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 81

SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> CREATE TABLE DATATYPES (
 F_TINYINT TINYINT
 ,F_SMALLINT SMALLINT
 ,F_INTEGER INTEGER
 ,F_BIGINT BIGINT
 ,F_DOUBLE DOUBLE PRECISION
 ,F_REAL REAL
 ,F_FIXSTR CHAR (10)
 ,F_VARSTR VARCHAR (10));
SQL> COMMIT;
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, 'THIS', NULL);
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, 'THAT');
SQL> COMMIT;
SQL> EXIT;
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ −
 /TABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT)
$ CC DATATYPES.C
$ LINK DATATYPES.OBJ
$ RUN DATATYPES.EXE

4.1.13 Location of Host Source File Generated by the SQL
Precompilers

Bug 478898

When the SQL precompiler generates host source files (like .c, .pas, .for) from the precompiler source files, it
locates these files based on the /obj qualifier located on the command line given to the SQL precompiler.

The following examples show the location where the host source file is generated. When /obj is not specified
on the command line, the object and the host source file take the name of the SQL precompiler source files
with the extensions of .obj and .c respectively.

LUND> sqlpre/cc scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 3 files.

When /obj is specified on the command line, the object and the host source take the name given on the
qualifier switch. It uses the default of the SQL precompiler source if a filespec is not specified. It uses the
defaults of .obj and .c if the extension is not specified. If the host language is other than C, then it uses the
appropriate host source extension (like .pas, .for, etc). The files also default to the current directory if a
directory specification is not specified.

LUND> sqlpre/cc/obj=myobj scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

Oracle® Rdb for OpenVMS

4.1.13 Location of Host Source File Generated by the SQL Precompilers 82

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
LUND> dir myobj.*

Directory MYDISK:[LUND]

MYOBJ.C;1 MYOBJ.OBJ;2

Total of 2 files.

LUND> sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
LUND> dir MYDISK:[lund.tmp]scc_try_mli_successful.*

Directory MYDISK:[LUND.TMP]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2

Total of 2 files.

This problem has been corrected in Oracle Rdb Release 7.0.6.

4.1.14 Suggestion to Increase GH_RSRVPGCNT Removed

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains a section titled "Installing
Oracle Rdb Images as Resident on OpenVMS Alpha" that includes information about increasing the value of
the OpenVMS system parameter GH_RSRVPGCNT when you modify the RMONSTART.COM or
SQL$STARTUP.COM procedures to install Rdb images with the /RESIDENT qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only ever required if the RMONSTART.COM or
SQL$STARTUP.COM procedures have been manually modified to install Rdb images with the /RESIDENT
qualifier. Furthermore, if the RMONSTART.COM and SQL$STARTUP.COM procedures are executed
during the system startup procedure (directly from SYSTARTUP_VMS.COM, for example), then there is no
need to modify the GH_RSRVPGCNT parameter.

Oracle and HP suggest that you do not modify the value of the GH_RSRVPGCNT system parameter unless it
is absolutely required. Some versions of OpenVMS on some hardware platforms require that
GH_RSRVPGCNT be zero in order to ensure the highest level of system performance.

4.1.15 Clarification of the DDLDONOTMIX Error Message

Bug 454080

The ALTER DATABASE statement performs two classes of functions: changing the database root structures
in the .RDB file and modifying the system metadata in the RDB$SYSTEM storage area. The first class of
changes do not require a transaction to be active. However, the second class requires that a transaction be

Oracle® Rdb for OpenVMS

4.1.14 Suggestion to Increase GH_RSRVPGCNT Removed 83

active. Oracle Rdb does not currently support the mixing of these two classes of ALTER DATABASE
clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the {SQL−syntax}
clause can not be used with some ALTER DATABASE clauses" is displayed, and the ALTER DATABASE
statement fails.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA;
%RDB−F−BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
−RDMS−E−DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

The following clauses may be mixed with each other but may not appear with other clauses such as ADD
STORAGE AREA, or ADD CACHE.

DICTIONARY IS [NOT] REQUIRED•
DICTIONARY IS NOT USED•
MULTISCHEMA IS { ON | OFF }•
CARDINALITY COLLECTION IS { ENABLED | DISABLED }•
METADATA CHANGES ARE { ENABLED | DISABLED }•
WORKLOAD COLLECTION IS { ENABLED | DISABLED }•

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into two statements,
one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

4.1.16 Compressed Sorted Index Entry Stored in Incorrect
Storage Area

This note was originally included in the Oracle Rdb Release 7.0.1.3 and 7.0.2 Release Notes. The logical
name documented in the note for those releases was documented incorrectly. Below is a corrected note.

In specific cases, in versions V6.1 and V7.0 of Oracle Rdb, when a partitioned, compressed sorted index was
created after the data was inserted into the table, b−tree entries may have been inserted into the wrong storage
area.

All of the following criteria must be met in order for the possibility of this problem to occur:

CREATE INDEX is issued after there are records already in the table on which the index is being
created

•

index must be partitioned over a single column•
index must have compression enabled•
scale factor must be zero on the columns of the index•
no collating sequences specified on the columns of the index•

Oracle® Rdb for OpenVMS

4.1.16 Compressed Sorted Index Entry Stored in Incorrect Storage Area 84

no descending indexes•
MAPPING VALUES must not be specified•

RMU/DUMP/AREA=xx will show that the b−tree entry was not stored in the expected storage area.
However, in versions V6.1 and V7.0 of Oracle Rdb, the rows of the table can still be successfully retrieved.

The following example shows the problem:

create database
 filename foo
 create storage area Area_1
 filename Area_1
 create storage area Area_2
 filename Area2;

create table T1
 (C1 integer);

! insert data into table prior to index creation
insert into T1 values (0);
commit;

! create index with COMPRESSION ENABLED
create index Index_1
 on T1 (C1)
 enable compression
 store using (C1)
 in Area_1 with limit of (0)
 otherwise in Area_2;
COMMIT;
!
! Dump out the page for b−tree in AREA_1, there are 0 bytes stored.
! There should be 5 bytes stored for the b−tree entry.
!
RMU/DUMP/AREA=AREA_1
.
.
. total B−tree node size: 430
 0030 2003 0240 line 0 (2:5:0) index: set 48
 002F FFFFFFFF FFFF 0244 owner 47:−1:−1
 0000 024C 0 bytes of entries <−−−***** no entry
 8200 024E level 1, full suffix
00000000000000000000000000000000 0250 unused '................'
.
.
.
!
! Dump out the page for b−tree in AREA_2, there are 5 bytes stored
!
RMU/DUMP/AREA=AREA_2
.
.
. total B−tree node size: 430
 0031 2003 0240 line 0 (3:5:0) index: set 49
 002F FFFFFFFF FFFF 0244 owner 47:−1:−1
 000A 024C 10 bytes of entries
 8200 024E level 1, full suffix
 00 05 0250 5 bytes stored, 0 byte prefix <−−−entry
 0100008000 0252 key '.....'
 22B1 10 0257 pointer 47:554:0

Oracle® Rdb for OpenVMS

4.1.16 Compressed Sorted Index Entry Stored in Incorrect Storage Area 85

.

.

.

This problem occurs when index compression is enabled. Therefore, a workaround is to create the index with
compression disabled (which is the default). Once this update kit is applied, it is recommended that the index
be dropped and recreated with compression enabled to rebuild the b−tree.

Note

In prior versions, the rows were successfully retrieved even though the key values were
stored in the wrong storage area. This was due to the range query algorithm skipping empty
partitions or scanning extra areas.

However, due to an enhancement in the algorithm for range queries on partitioned
SORTED indexes in Oracle Rdb Release 7.0.2, the rows of the table which are stored in the
incorrect storage areas may not be retrieved when using the partitioned index.

The optimized algorithm now only scans the relevant index areas (and no longer skips over
empty areas) resulting in only those rows being returned. Therefore, it is recommended that
the index be dropped and re−created. For a short term solution, another alternative is to
disable the new optimization by defining the logical RDMS$INDEX_PART_CHECK to 0.

This problem has been corrected in Oracle Rdb Release 7.0.1.3.

4.1.17 Partition Clause is Optional on CREATE STORAGE MAP

Bug 642158

In the Oracle Rdb7 SQL Reference Manual, the syntax diagram for the CREATE STORAGE MAP statement
incorrectly shows the partition clause as required syntax. The partition clause is not a required clause.

This correction will appear in the next publication of the Oracle Rdb SQL Reference Manual.

4.1.18 Oracle Rdb Logical Names

The Oracle Rdb7 Guide to Database Performance and Tuning contains a table in Chapter 2 summarizing the
Oracle Rdb logical names and configuration parameters. The information in the following table supersedes the
entries for the RDM$BIND_RUJ_ALLOC_BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT logical
names.

Logical Name
Configuration Parameter

Function

RDM$BIND_RUJ_ALLOC_BLKCNT
Allows you to override the default value of the .ruj file. The
block count value can be defined between 0 and 2 billion
with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT
Allows you to pre−extend the .ruj files for each process
using a database. The block count value can be defined
between 0 and 65535 with a default of 127.

Oracle® Rdb for OpenVMS

4.1.17 Partition Clause is Optional on CREATE STORAGE MAP 86

4.1.19 Documentation Error in Oracle Rdb Guide to Database
Performance and Tuning

The Oracle Rdb7 Guide to Database Performance and Tuning, Volume 2 contains an error in section C.7,
"Displaying Sort Statistics with the R Flag".

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort operation. A zero (0) value
indicates that the sort was accomplished completely in memory.

•

This is incorrect. This statistic should be described as shown:

Work File Alloc indicates how much space (in blocks) was allocated in the work files for this sort
operation. A zero (0) value indicates that the sort was accomplished completely in memory.

•

This error will be corrected in a future release of Oracle Rdb Guide to Database Performance and Tuning.

4.1.20 SET FLAGS Option IGNORE_OUTLINE Not Available

Bug 510968

The Oracle Rdb7 SQL Reference Manual described the option IGNORE_OUTLINE in Table 7−6 of the SET
FLAGS section. However, this keyword was not implemented in Oracle Rdb Release 7.0.

This has been corrected in this release of Oracle Rdb. This keyword is now recognized by the SET FLAGS
statement. As a workaround the logical name RDMS$BIND_OUTLINE_FLAGS "I" can be used to set this
attribute.

4.1.21 SET FLAGS Option INTERNALS Not Described

The Oracle Rdb7 SQL Reference Manual does not describe the option INTERNALS in Table 7−6 in the SET
FLAGS section. This keyword was available in first release of Oracle Rdb 7.0 and is used to enable debug
flags output for internal queries such as constraints and triggers. It can be used in conjunction with other
options such as STRATEGY, BLR, and EXECUTION. For example, the following flag settings are
equivalent to defining the RDMS$DEBUG_FLAGS as ISn and shows the strategy used by the trigger's
actions on the AFTER DELETE trigger on the EMPLOYEES table.

SQL> SET FLAGS 'STRATEGY, INTERNAL, REQUEST_NAME';
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:
 INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = '00164';
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation DEGREES
 Index name DEG_EMP_ID [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation JOB_HISTORY
 Index name JOB_HISTORY_HASH [1:1]

Oracle® Rdb for OpenVMS

4.1.19 Documentation Error in Oracle Rdb Guide to Database Performance and Tuning 87

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Conjunct Get Retrieval by index of relation DEPARTMENTS
 Index name DEPARTMENTS_INDEX [0:0]
Temporary relation Get Retrieval by index of relation EMPLOYEES
 Index name EMPLOYEES_HASH [1:1] Direct lookup
1 row deleted

4.1.22 Documentation for VALIDATE_ROUTINE Keyword for SET
FLAGS

The SET FLAGS section of the Oracle Rdb7 SQL Reference Manual omitted the description of the
VALIDATE_ROUTINE keyword (which can be negated as NOVALIDATE_ROUTINE). This keyword
enables the re−validation of an invalidated stored procedure or function. This flag has the same action as the
logical RDMS$VALIDATE_ROUTINE described in the Oracle Rdb7 Guide to Database Performance and
Tuning.

This example shows the re−validation of a stored procedure. When the stored routine is successfully prepared
(but not executed), the setting of VALIDATE_ROUTINE causes the entry for this routine in the
RDB$ROUTINES system table to be set as valid.

SQL> SET TRANSACTION READ WRITE;
SQL> SET FLAGS 'VALIDATE_ROUTINE';
SQL> SET NOEXECUTE;
SQL> CALL ADD_EMPLOYEE ('Smith');
SQL> SET EXECUTE;
SQL> COMMIT;

In this example, the use of the SET NOEXECUTE statement in interactive SQL allows the stored routine to
be successfully compiled, but it is not executed.

4.1.23 Documentation for Defining the RDBSERVER Logical
Name

Bugs 460611 and 563649.

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and Configuration Guide provide
the following examples for defining the RDBSERVER logical name:

 $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE
 and
 $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt to reference the
RDBSERVERxx.EXE image. The following is one example where the RDBSERVER.COM procedure
references SYS$COMMON:<SYSEXE> and SYS$COMMON:[SYSEXE], rather than SYS$SYSTEM:

$ if .not. −
 ((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. −
 (f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))

Oracle® Rdb for OpenVMS

4.1.22 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS 88

$ then
$ say "''rdbserver_image' is not found in SYS$COMMON:<SYSEXE>"
$ say "RDBSERVER logical is ''rdbserver_image'"
$ exit
$ endif

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide, the image would not be found.

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide should define the logical name as
follows:

 DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER70.EXE
 and
 DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

4.1.24 Undocumented SET Commands and Language Options

The following SET statements were omitted from the Oracle Rdb7 documentation.

4.1.24.1 QUIET COMMIT Option

The SET QUIET COMMIT statement (for interactive and dynamic SQL), the module header option QUIET
COMMIT, the /QUIET_COMMIT (and /NOQUIET_COMMIT) qualifier for SQL module language, or the
/SQLOPTIONS=QUIET_COMMIT (and NOQUIET_COMMIT) option for the SQL language precompiler
allows the programmer to control the behavior of the COMMIT and ROLLBACK statements in cases where
there is no active transaction.

By default, if there is no active transaction, SQL will raise an error when COMMIT or ROLLBACK is
executed. This default is retained for backward compatibility for applications that may wish to detect the
situation. If QUIET COMMIT is set to ON, then a COMMIT or ROLLBACK executes successfully when
there is no active transaction.

Note

Within a compound statement, the COMMIT and ROLLBACK statements in this case are
ignored.

Examples

In interactive or dynamic SQL, the following SET command can be used to disable or enable error reporting
for COMMIT and ROLLBACK when no transaction is active. The parameter to the SET command is a string
literal or host variable containing the keyword ON or OFF. The keywords may be in any case (upper, lower,
or mixed).

SQL> COMMIT;
%SQL−F−NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;
%SQL−F−NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT 'on';
SQL> ROLLBACK;

Oracle® Rdb for OpenVMS

4.1.24 Undocumented SET Commands and Language Options 89

SQL> COMMIT;
SQL> SET QUIET COMMIT 'off';
SQL> COMMIT;
%SQL−F−NO_TXNOUT, No transaction outstanding

In the SQL module language or precompiler header, the clause QUIET COMMIT can be used to disable or
enable error reporting for COMMIT and ROLLBACK when no transaction is active. The keyword ON or
OFF must be used to enable or disable this feature. The following example enables QUIET COMMIT so that
no error is reported if a COMMIT is executed when no transaction is active. For example:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

4.1.24.2 COMPOUND TRANSACTIONS Option

The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic SQL) and the module
header option COMPOUND TRANSACTIONS allows the programmer to control the SQL behavior for
starting default transactions for compound statements.

By default, if there is no current transaction, SQL will start a transaction before executing a compound
statement or stored procedure. However, this may conflict with the actions within the procedure, or may start
a transaction for no reason if the procedure body does not perform any database access. This default is
retained for backward compatibility for applications that may expect a transaction to be started for the
procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, then SQL starts a transaction before executing the
procedure; otherwise, if it is set to INTERNAL, it allows the procedure to start a transaction as required by the
procedure execution.

Examples

In interactive or dynamic SQL, the following SET command can be used to disable or enable transactions
started by the SQL interface. The parameter to the SET command is a string literal or host variable containing
the keyword INTERNAL or EXTERNAL. The keywords may be in any case (upper, lower, or mixed). For
example:

SQL> SET COMPOUND TRANSACTIONS 'internal';
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS 'external';
SQL> CALL UPDATE_EMPLOYEES (...);

In the SQL module language or precompiler header, the clause COMPOUND TRANSACTIONS can be used
to disable or enable starting a transaction for procedures. The keyword INTERNAL or EXTERNAL must be
used to enable or disable this feature.

Oracle® Rdb for OpenVMS

4.1.24.2 COMPOUND TRANSACTIONS Option 90

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

4.1.25 Undocumented Size Limit for Indexes with Keys Using
Collating Sequences

Bug 586079

When a column is defined with a collating sequence, the index key is specially encoded to incorporate the
correct ordering (collating) information. This special encoding takes more space than keys encoded for ASCII
(the default when no collating sequence is used). Therefore, the encoded string uses more than the customary
one byte per character of space within the index. This is true for all versions of Oracle Rdb that support
collating sequences.

For all collating sequences, except Norwegian, the space required is approximately 9 bytes for every 8
characters. So, a CHAR (24) column will require approximately 27 bytes. For Norwegian collating sequences,
the space required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when calculating the size of an index
key against the limit of 255 bytes. Suppose a column defined with a collating sequence of GERMAN was
used in an index. The length of that column is limited to a maximum of 225 characters because the key will be
encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a German collating sequence
and included in an index, exceeds the index size limit of 255 bytes, even though the column is defined as less
than 255 characters in length:

SQL> CREATE DATABASE
cont> FILENAME 'TESTDB.RDB'
cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> CREATE TABLE EMPLOYEE_INFO (
cont> EMP_NAME CHAR (233));
SQL> CREATE INDEX EMP_NAME_IDX
cont> ON EMPLOYEE_INFO (
cont> EMP_NAME ASC)
cont> TYPE IS SORTED;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−INDTOOBIG, requested index is too big

Oracle® Rdb for OpenVMS

4.1.25 Undocumented Size Limit for Indexes with Keys Using Collating Sequences 91

4.1.26 Changes to RMU/REPLICATE AFTER/BUFFERS
Command

The behavior of the RMU/REPLICATE AFTER/BUFFERS command has been changed. The /BUFFERS
qualifier may be used with either the CONFIGURE option or the START option.

When using local buffers, the AIJ log roll−forward server (LRS) will use a minimum of 4096 buffers. The
value provided to the /BUFFERS qualifier will be accepted, but it will be ignored if it is less than 4096. In
addition, further parameters will be checked and the number of buffers may be increased if the resulting
calculations are greater than the number of buffers specified by the /BUFFERS qualifier. If the database is
configured to use more than 4096 AIJ request blocks (ARBs), then the number of buffers may be increased to
the number of ARBs configured for the database. The LRS ensures that there are at least 10 buffers for every
possible storage area in the database. Thus, if the total number of storage areas (both used and reserved)
multiplied by 10 results in a greater number of buffers, that number will be used.

When global buffers are used, the number of buffers used by the AIJ log roll−forward server is determined as
follows:

If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is specified, the number of buffers
will default to the previously configured value, if any, or 256, whichever is larger.

•

If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is not specified or the /NOONLINE
is specified, the number of buffers will default to the maximum number of global buffers allowed per
user ("USER LIMIT"), or 256, whichever is larger.

•

If the /BUFFERS qualifier is specified, that value must be at least 256, and it may not be greater than
the maximum number of global buffers allowed per user ("USER LIMIT").

•

The /BUFFER qualifier now enforces a minimum of 256 buffers for the AIJ log roll−forward server. The
maximum number of buffers allowed is still 524288 buffers.

4.1.27 Change in the Way RDMAIJ Server is Set Up in UCX

Starting with Oracle Rdb V7.0.2.1, the RDMAIJ image has become a varianted image. Therefore, the
information in section 2.12, "Step 10: Specify the Network Transport Protocol," of the Oracle Rdb7 and
Oracle CODASYL DBMS Guide to Hot Standby Databases has become outdated in regards to setting up the
RDMAIJSERVER object when using UCX as the network transport protocol. The UCX SET SERVICE
command should now look similar to the following:

 $ UCX SET SERVICE RDMAIJ −
 /PORT=<port_number> −
 /USER_NAME=RDMAIJ −
 /PROCESS_NAME=RDMAIJ −
 /FILE=SYS$SYSTEM:RDMAIJSERVER.com −
 /LIMIT=<limit>

And for Oracle Rdb multiversion, it should look similar to the following:

 $ UCX SET SERVICE RDMAIJ70 −
 /PORT=<port_number> −
 /USER_NAME=RDMAIJ70 −
 /PROCESS_NAME=RDMAIJ70 −
 /FILE=SYS$SYSTEM:RDMAIJSERVER70.com −
 /LIMIT=<limit>

Oracle® Rdb for OpenVMS

4.1.26 Changes to RMU/REPLICATE AFTER/BUFFERS Command 92

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn) and places a file called
RDMAIJSERVER(nn).com in SYS$SYSTEM and the RMONSTART(nn).COM command procedure will try
to enable a service called RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a multivarianted image does not impact installations using DECNet since the
correct DECNet object is created during the Rdb installation.

4.1.28 CREATE INDEX Supported for Hot Standby

On page 1−13 of the Guide to Hot Standby Databases, the add new index operation is incorrectly listed as an
offline operation not supported by Hot Standby. The CREATE INDEX operation is now fully supported by
Hot Standby, as long as the transaction does not span all available AIJ journals, including emergency AIJ
journals.

4.1.29 Dynamic OR Optimization Formats

Bug 711643

In Table C−2 on Page C−7 of the Oracle Rdb7 Guide to Database Performance and Tuning, the dynamic OR
optimization format is incorrectly documented as [l:h...]n. The correct formats for Oracle Rdb Release 7.0 and
later are [(l:h)n] and [l:h,l2:h2].

Oracle® Rdb for OpenVMS

4.1.28 CREATE INDEX Supported for Hot Standby 93

Chapter 5
Known Problems and Restrictions
This chapter describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.0.7.1.

Chapter 5Known Problems and Restrictions 94

5.1 Oracle Rdb Considerations

5.1.1 AIJ Log Server Process May Loop Or Bugcheck

Bugs 2651475 and 1756433

Under unknown, but extremely rare conditions, on busy databases where the After Image Journal (AIJ) Log
Server process is enabled, the ALS process has been observed to enter a loop condition writing AIJ
information to the AIJ file(s).

In the worst case, this problem could cause all available journal files to be filled with repeating data. If no
remedial action were to be taken, this condition could cause the database to be shutdown and the AIJ journals
to be considered inaccessable.

The database is not corrupted by this problem.

Stopping and restarting the ALS process will clear the looping condition even if the ALS process must be
stopped using the STOP/ID command.

Stopping the ALS process will not impact production as AIJ writes will automatically revert to the non−ALS
behaviour.

In Oracle Rdb Release 7.0.7 the behaviour of Rdb has been changed so that should this problem be detected,
the ALS process will automatically shutdown producing a bugcheck dump file. This will prevent any danger
of filling all available journals and will ensure that the database remains available.

ALS may be safely restarted immediately as the conditions that cause such a loop are resolved during
recovery of the ALS process.

5.1.2 Optimization of Check Constraints

Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the optimizer than
when the same or similar constraint is phrased using referential integrity (PRIMARY and FOREIGN KEY)
constraints. Following is an example.

I have two tables T1 and T2, both with one column, and I wish to ensure that all values in table T1 exist in T2.
Both tables have an index on the referenced field. I could use a PRIMARY KEY constraint on T2 and a
FOREIGN KEY constraint on T1.

SQL> alter table t2
cont> alter column f2 primary key not deferrable;
SQL> alter table t1
cont> alter column f1 references t2 not deferrable;

When deleting from the PRIMARY KEY table, Oracle Rdb will only check for rows in the FOREIGN KEY
table where the FOREIGN KEY has the deleted value. This can be seen as an index lookup on T1 in the
retrieval strategy.

5.1 Oracle Rdb Considerations 95

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Index only retrieval of relation T1
 Index name I1 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb efficiently detects that only those
rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This could be
necessary because the presence of NULL values in the table T2 precludes the definition of a primary key on
that table. This could be done with a CHECK constraint of the form:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [0:0]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

The cross block is for the constraint evaluation. This retrieval strategy indicates that to evaluate the constraint,
the entire index on table T1 is being scanned and for each key, the entire index in table T2 is being scanned.

The behavior can be improved somewhat by using an equality join condition in the select clause of the
constraint:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2 where f2=f1))
cont> not deferrable;

or:

SQL> alter table t1
cont> alter column f1
cont> check (f1=(select * from t2 where f2=f1))
cont> not deferrable;

In both cases, the retrieval strategy will look as follows:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2

Oracle® Rdb for OpenVMS

5.1 Oracle Rdb Considerations 96

 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to perform an index lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS" operators with
respect to null handling, and the complexity of dealing with non−equality join conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to use a series of
triggers to perform the constraint check. The following triggers perform a similar check to the constraints
above.

SQL> create trigger t1_insert
cont> after insert on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> create trigger t1_update
cont> after update on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> ! A delete trigger is not needed on T1.
SQL> create trigger t2_delete
cont> before delete on t2
cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;
SQL> create trigger t2_modify
cont> after update on t2
cont> referencing old as t2o new as t2n
cont> when (exists (select * from t1 where f1=t2o.f2))
cont> (error) for each row;
SQL> ! An insert trigger is not needed on T2.

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate−F1 Index only retrieval of relation T1
 Index name I1 [1:1]
Temporary relation Get Retrieval by index of relation T2
 Index name I2 [1:1]
%RDB−E−TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
−RDMS−E−TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that the index on T1 is used to
examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the operation of the
triggers, the use of "IN" and "EXISTS", and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex and cannot be phrased using
referential integrity constraints. For example, if the application is such that the value in table T1 may be
spaces or NULLs to indicate the absence of a value, the above triggers could easily be modified to allow for
these semantics.

Oracle® Rdb for OpenVMS

5.1 Oracle Rdb Considerations 97

5.1.3 Dynamic Optimization Estimation Incorrect for Ranked
Indices

The dynamic optimization process was incorrectly calculating the cost of scanning indices of type SORTED
RANKED.

In the following example, the table being queried has the numbers one to one thousand in both fields. The
different ranges used should result in a different estimated cost. However, in all cases the ESTIM phase
computes the cost of scanning these indicies as 680:

SQL> select * from t where f1 between 1 and 2 and f2 between 2 and 1000;
~S#0003
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:34/0\680 2:34/0\680
~E#0003.01(1) BgrNdx1 EofData DBKeys=2 Fetches=2+0 RecsOut=1 #Bufs=1
~E#0003.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+1 RecsOut=1`ABA
~E#0003.01(1) Fin Buf DBKeys=2 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected
SQL> select * from t where f1 between 2 and 1000 and f2 between 1 and 2;
~S#0004
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 1:34/0\680 2:34/0\680
~E#0004.01(1) BgrNdx1 EofData DBKeys=999 Fetches=0+10 RecsOut=1 #Bufs=10
~E#0004.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+11 RecsOut=1`ABA
~E#0004.01(1) Fin Buf DBKeys=999 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected

In the first example (query 3), the index T1 on field F1 is the correct index to use, as the key range is very
small. In the second example (query 4), the index T2 on field F2 is the correct index to use. However, in both
cases, the indices are costed the same so no index reordering takes place.

Even in this small example, significantly more work is being performed in query 4 as can be observed from
the I/O counts.

This is a known problem in Oracle Rdb and it will be fixed in a future release.

The only workaround is to use indices of TYPE IS SORTED rather than of TYPE IS SORTED RANKED.

5.1.4 Running Rdb Applications With the VMS Heap Analyzer

When trying to debug an Rdb application under the OpenVMS Heap Analyzer (by defining LIBRTL as
SYS$LIBRARY:LIBRTL_INSTRUMENTED), the software will not attach to the database, and returns

 RDB−E−UNAVAILABLE, Oracle Rdb is not available on your system

as if RDB is not running.

Oracle® Rdb for OpenVMS

5.1.3 Dynamic Optimization Estimation Incorrect for Ranked Indices 98

To solve this problem, there are two executables that must be installed as known images:

$install add sys$share:librtl_instrumented
$install add sys$share:dgit$libshr12

The error is misleading. Since parts of Rdb are installed as privileged images, any shareable images it
references, AND any images they, in turn, reference, must also be 'known'. By redirecting LIBRTL to
SYS$LIBRARY:LIBRTL_INSTRUMENTED, these extra images are referenced. If Rdb had directly
referenced the new image, a more accurate error, such as:

%DCL−W−ACTIMAGE, error activating image xxxxx

would have been reported.

5.1.5 RMU/RECOVER/AREA Needs Area List

Bug 1778243

When doing an RMU/RECOVER/AREA, without specifying a list of area names, there will be a new version
of the current active AIJ file created. This new version of the AIJ will have the next recovery sequence
number. If a subsequent recovery is applied, an error is generated indicating that the original recovery
sequence number cannot be found and the recovery will abort.

If a list of storage areas to be recovered is supplied, this behaviour does not occur and no new version of the
journal is created. It is recommended as best practice to use a list of storage areas when recovering by area to
avoid any subsequent confusion during recovery.

5.1.6 PAGE TRANSFER VIA MEMORY Disabled

Oracle internal testing has revealed that the "PAGE TRANSFER VIA MEMORY" option for global buffers is
not as robust as is needed for the Mission Critical environments where Oracle Rdb is often deployed. This
feature has been disabled in Oracle Rdb Version 7.0.xx. Oracle intends to re−enable this feature in a future
Version 7.1 release.

5.1.7 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying storage areas.
These errors indicate that the Space Area Management ("SPAM") page fullness threshold for a particular data
page does not match the actual space usage on the data page. For a further discussion of SPAM pages, consult
the Oracle Rdb Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database. There is potential
for space on the data page to not be totally utilized, or for a small amount of extra I/O to be expended when
searching for space in which to store new rows. But unless there are many of these errors then the impact
should be negligible.

It is possible for these inconsistencies to be introduced by errors in the Oracle Rdb product. When those cases
are discovered, Oracle Rdb is corrected to prevent the introduction of the inconsistencies. It is also possible
for these errors to be introduced during the normal operation of the product. The following scenario can leave
the SPAM pages inconsistent:

Oracle® Rdb for OpenVMS

5.1.5 RMU/RECOVER/AREA Needs Area List 99

A process inserts a row on a page, and updates the threshold entry on the corresponding SPAM page
to reflect the new space utilization of the data page. The data page and SPAM pages are not flushed to
disk.

1.

Another process notifies the first process that it would like to access the SPAM page being held by the
process. The first process flushes the SPAM page changes to disk and releases the page. Note that it
has not flushed the data page.

2.

The first process then terminates abnormally (for example, from the DCL STOP/IDENTIFICATION
command). Since that process never flushed the data page to disk, it never wrote the changes to the
Recovery Unit Journal (RUJ) file. Since there were no changes in the RUJ file for that data page, then
the Database Recovery ("DBR") process did not need to rollback any changes to the page. The SPAM
page retains the threshold update change made above even though the data page was never flushed to
disk.

3.

While it would be possible to create mechanisms to ensure that SPAM pages do not become out of synch with
their corresponding data pages, the performance impact would not be trivial. Since these errors are relatively
rare and the impact is not significant, the introduction of these errors is considered to be part of the normal
operation of the Oracle Rdb product. If it can be proven that the errors are not due to the scenario above then
Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following operations:

Recreate the database by performing:
SQL EXPORT1.
SQL DROP DATABASE2.
SQL IMPORT3.

•

Recreate the database by performing:
RMU/BACKUP1.
SQL DROP DATABASE2.
RMU/RESTORE3.

•

Repair the SPAM pages by using the RMU/REPAIR command. Note that the RMU/REPAIR
command does not write its changes to an after−image journal (AIJ) file. Therefore, Oracle
recommends that a full database backup be performed immediately after using the RMU/REPAIR
command.

5.1.8 Behavior Change in 'With System Logical_Name
Translation' Clause

The way logical name translation is performed when 'with system logical_name translation' is
specified in the 'location' clause of the 'create function' or the 'create routine' statements has changed.
This change occured between OpenVMS VAX V5.5−2 and OpenVMS V7.1.

When 'with system logical_name translation' is specified, any logical name in the location string is
expanded using only EXECUTIVE_MODE logical names. In OpenVMS VAX V5.5−2, the logical
names are expanded from the SYSTEM logical name table only. In OpenVMS V7.1, the logical
names are expanded from the first definition found when searching the logical name tables in
(LNM$FILE_DEV) order.

Thus, if a logical is only defined in the EXECUTIVE_MODE SYSTEM table (and in no other
EXECUTIVE_MODE tables), then there will be no apparent change in behavior. However, if a
logical name has been defined in the EXECUTIVE_MODE GROUP table and in the

•

Oracle® Rdb for OpenVMS

5.1.8 Behavior Change in 'With System Logical_Name Translation' Clause 100

EXECUTIVE_MODE SYSTEM table, then on OpenVMS VAX V5.5 the SYSTEM table translation
will be used and on OpenVMS V7.1 the GROUP table translation will be used.

Oracle believes that this behavioral change is still in keeping with the secure intent of this clause for
external routines. An OpenVMS user must have SYSNAM privilege to define an EXEC mode logical
in any table. Therefore, it still provides a secure method of locating production sharable images for
use by the Rdb server.

A future version of the Oracle Rdb SQL Reference manual will be reworded to remove the reference
to the SYSTEM logical name table in the description. The keyword SECURE will be synonymous
with SYSTEM in this context.

As an example, if the logical TEST_EXTRTN_1 is defined as:

$ show logical/access_mode=executive_mode test_extrtn_1
 "TEST_EXTRTN_1" = "NOSUCHIMG9" (LNM$PROCESS_TABLE)
 "TEST_EXTRTN_1" = "NOSUCHIMGA" (LNM$JOB_9D277AC0)
 "TEST_EXTRTN_1" = "NOSUCHIMGB" (TEST$GROUP_LOGICALS)
 "TEST_EXTRTN_1" = "DISK1:[TEST]EXTRTN.EXE" (LNM$SYSTEM_TABLE)

Then under OpenVMS VAX V5.5−2, TEST_EXTRTN_1 will be translated as
"DISK1:[TEST]EXTRTN.EXE" whereas under OpenVMS V7.1 it will be translated as
"NOSUCHIMG9".

5.1.9 Carry−Over Locks and NOWAIT Transactions
Clarification

In NOWAIT transactions, the BLAST mechanism cannot be used. For the blocking user to receive the
BLAST signal, the requesting user must request the locked resource with WAIT (which a NOWAIT
transaction does not do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate
that a NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests
the NOWAIT resource. All other database users hold a lock on the NOWAIT resource so that when
the NOWAIT transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST
causes blocking users to release any carry−over locks. There can be a delay before the transactions
with carry−over locks detect the presence of the NOWAIT transaction and release their carry−over
locks. You can detect this condition by examining the stall messages. If the "Waiting for NOWAIT
signal (CW)" stall message appears frequently, then the application is probably experiencing a
decrease in performance and you should consider disabling the carry−over lock behavior.

5.1.10 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator and a value that is
the same as the boundary value of a storage map, Oracle Rdb scans extra partitions. A boundary value
is a value specified in the WITH LIMIT OF clause. The following example, executed while the
logical name RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:

 ATTACH 'FILENAME MF_PERSONNEL';
 CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
 CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE
 STORE USING (ID)
 IN EMPIDS_LOW WITH LIMIT OF (200)

Oracle® Rdb for OpenVMS

5.1.9 Carry−Over Locks and NOWAIT Transactions Clarification 101

 IN EMPIDS_MID WITH LIMIT OF (400)
 OTHERWISE IN EMPIDS_OVER;
 INSERT INTO T1 VALUES (150,'Boney','MaryJean');
 INSERT INTO T1 VALUES (350,'Morley','Steven');
 INSERT INTO T1 VALUES (300,'Martinez','Nancy');
 INSERT INTO T1 VALUES (450,'Gentile','Russ');

 SELECT * FROM T1 WHERE ID > 400;
 Conjunct Get Retrieval sequentially of relation T1
 Strict Partitioning: part 2 3
 ID LAST_NAME FIRST_NAME
 450 Gentile Russ
 1 row selected

In the previous example, partition 2 does not need to be scanned. This does not affect the correctness
of the result. Users can avoid the extra scan by using values other than the boundary values.

5.1.11 Exclusive Access Transactions May Deadlock With
RCS Process

If a table is frequently accessed by long running transactions that request READ/WRITE access
reserving the table for EXCLUSIVE WRITE, and if the table has one or more indexes, you may
experience deadlocks between the user process and the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

Reserve the table for SHARED WRITE.1.
Close the database and disable row cache for the duration of the exclusive transaction.2.
Change the checkpoint interval for the RCS process to a time longer than the time required to
complete the batch job and then trigger a checkpoint just before the batch job starts. Set the
interval back to a smaller interval after the checkpoint completes.

3.

5.1.12 Oracle Rdb and OpenVMS ODS−5 Volumes

The OpenVMS Version 7.2 release introduced an Extended File Specifications feature, which consists
of two major components:

A new, optional, volume structure, ODS−5, which provides support for file names that are
longer and have a greater range of legal characters than in previous versions of OpenVMS.

♦

Support for "deep" directory trees.♦
ODS−5 was introduced primarily to provide enhanced file sharing capabilities for users of Advanced
Server for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as DCOM and
JAVA applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and explicitly requires
ODS−2 (the traditional OpenVMS volume structure) file and directory name conventions to be
followed. Because of this knowledge, Oracle does not support any Oracle Rdb database file
components (including root files, storage area files, after image journal files, record cache backing
store files, database backup files, after image journal backup files, etc.) that utilize any non−ODS−2
file naming features. For this reason, Oracle recommends that Oracle Rdb database components not
be located on ODS−5 volumes.

Oracle® Rdb for OpenVMS

5.1.11 Exclusive Access Transactions May Deadlock With RCS Process 102

Oracle does support Oracle Rdb database file components on ODS−5 volumes provided that all of
these files and directories used by Oracle Rdb strictly follow the ODS−2 file and directory name
conventions. In particular, all file names must be specified entirely in uppercase and "special"
characters in file or directory names are forbidden.

5.1.13 Clarification of the USER Impersonation Provided by
the Oracle Rdb Server

Bug 551240

In Oracle Rdb V6.1, a new feature was introduced which allowed a user to attach (or connect) to a
database by providing a username (USER keyword) and a password (USING keyword). This
functionality allows the Rdb Server to impersonate those users in two environments.

Remote Database Access. When DECnet is used as the remote transport, the Rdb/Dispatch
layer of Oracle Rdb uses the provided username and password, or proxy access to create a
remote process which matches the named user. However, in a remote connection over
TCP/IP, the RDBSERVER process is always logged into RDB$REMOTE rather than a
specified user account. In this case the Rdb Server impersonates the user by using the user's
UIC (user identification code) during privilege checking. The UIC is assigned by the
OpenVMS AUTHORIZE utility.

♦

SQL/Services database class services. When SQL/Services (possibly accessed by ODBC)
accesses a database, it allows the user to logon to the database and the SQL/Services server
then impersonates that user in the database.

♦

When a database has access control established using OpenVMS rights identifiers, then access
checking in these two environments does not work as expected. For example, if a user JONES was
granted the rights identifier PAYROLL_ACCESS, then you would expect a table in the database with
SELECT access granted to PAYROLL_ACCESS to be accessible to JONES. This does not currently
work because the Rdb Server does not have the full OpenVMS security profile loaded, just the UIC.
So only access granted to JONES is allowed.

This problem results in an error being reported such as the following from ODBC:

[Oracle][ODBC][Rdb]%RDB−E−NO_PRIV privileged by database facility (#−1028)

This is currently a restriction in this release of Oracle Rdb. In the Rdb V7.1 release, support is
provided to inherit the users full security profile into the database.

5.1.14 Index STORE Clause WITH LIMIT OF Not Enforced in
Single Partition Map

Bug 413410

An index which has a STORE clause with a single WITH LIMIT OF clause and no OTHERWISE
clause doesn't validate the inserted values against the high limit. Normally values beyond the last
WITH LIMIT OF clause are rejected during INSERT and UPDATE statements.

Consider this example:

Oracle® Rdb for OpenVMS

5.1.13 Clarification of the USER Impersonation Provided by the Oracle Rdb Server 103

create table PTABLE (
 NR
 INTEGER,
 A
 CHAR (2));
create index NR_IDX
 on PTABLE (
 NR)
 type is HASHED
 store using (NR)
 in EMPIDS_LOW
 with limit of (10);

When a value is inserted for NR that exceeds the value 10, then an error such as
"%RDMS−E−EXCMAPLIMIT, exceeded limit on last partition in storage map for NR_IDX" should
be generated. However, this error is only reported if the index has two or more partitions.

A workaround for this problem is to create a CHECK constraint on the column to restrict the upper
limit. e.g. CHECK (NR <= 10). This check constraint should be defined as NOT DEFERRABLE and
will be solved using an index lookup.

This problem will be corrected in a future version of Oracle Rdb.

5.1.15 Unexpected NO_META_UPDATE Error Generated by
DROP MODULE ... CASCADE When Attached by
PATHNAME

Bug 755182

The SQL statement DROP MODULE ... CASCADE may sometimes generate an unexpected
NO_META_UPDATE error. This occurs when the session attaches to a database by PATHNAME.

SQL> drop module m1 cascade;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
−RDMS−E−MODNOTDEL, module "M1" has not been deleted

This error occurs because the CASCADE option is ignored because the Oracle CDD/Repository does
not support CASCADE. The workaround is to attach by FILENAME and perform the metadata
operation.

In a future version of Oracle Rdb, an informational message will be issued describing the downgrade
from CASCADE to RESTRICT in such cases.

5.1.16 Application and Oracle Rdb Both Using SYS$HIBER

In application processes that use Oracle Rdb and the $HIBER system service (possibly via RTL
routines such as LIB$WAIT), it is important that the application ensures that the event being waited
for has actually occurred. Oracle Rdb uses $HIBER/$WAKE sequences for interprocess
communications particularly when the ALS (AIJ Log Server) or the Row Cache features are enabled.

Oracle® Rdb for OpenVMS

5.1.15 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME104

Oracle Rdb's use of the $WAKE system service can interfere with other users of $HIBER (such as the
routine LIB$WAIT) that do not check for event completion, possibly causing a $HIBER to be
unexpectedly resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence that avoids
continuing without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo−code shows one example of how a flag can be used to indicate that a
timed−wait has completed correctly. The wait does not complete until the timer has actually fired and
set TIMER_FLAG to TRUE. This code relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
 BEGIN
 ! Clear the timer flag
 TIMER_FLAG = FALSE

 ! Schedule an AST for sometime in the future
 STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)

 ! Hibernate. When the $HIBER completes, check to make
 ! sure that TIMER_FLAG is set indicating that the wait
 ! has finished.
 WHILE TIMER_FLAG = FALSE
 DO SYS$HIBER()
 END

ROUTINE TIMER_AST:
 BEGIN
 ! Set the flag indicating that the timer has expired
 TIMER_FLAG = TRUE

 ! Wake the main−line code
 STAT = SYS$WAKE ()
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)
 END

Starting with OpenVMS V7.1, the LIB$WAIT routine has been enhanced via the FLAGS argument
(with the LIB$K_NOWAKE flag set) to allow an alternate wait scheme (using the $SYNCH system
service) that can avoid potential problems with multiple code sequences using the $HIBER system
service. See the OpenVMS RTL Library (LIB$) Manual for more information about the LIB$WAIT
routine.

5.1.17 IMPORT Unable to Import Some View Definitions

Bug 520651

View definitions that reference SQL functions, that is functions defined by the CREATE MODULE
statement, cannot currently be imported by the SQL IMPORT statement. This is because the views
are defined before the functions themselves exist.

The following example shows the errors from IMPORT.

IMPORTing view TVIEW
%SQL−F−NOVIERES, unable to import view TVIEW

Oracle® Rdb for OpenVMS

5.1.17 IMPORT Unable to Import Some View Definitions 105

%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−E−RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB−E−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−F−TABNOTDEF, relation TVIEW is not defined in database

The following script can be used to demonstrate the problem.

create database filename badimp;
create table t (sex char);

create module TFORMAT
 language SQL

 function FORMAT_OUT (:s char)
 returns char(4);
 return (case :s
 when 'F' then 'Female'
 when 'M' then 'Male'
 else NULL
 end);
end module;

create view TVIEW (m_f) as
 select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction will be lifted in a future release of Oracle Rdb. Currently the workaround is to save
the view definitions and reapply them after the IMPORT completes.

This restriction does not apply to external functions, created using the CREATE FUNCTION
statement, as these database objects are defined before tables and views.

5.1.18 AIJSERVER Privileges

For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created with only NETMBX
and TMPMBX privileges. These privileges are sufficient to start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate to ensure continued
replication in all environments and workload situations. Therefore, Oracle recommends that the DBA
provide the following additional privileges for the AIJSERVER account:

ALTPRI
This privilege allows the AIJSERVER to adjust its own priority to ensure adequate quorum
(CPU utilization) to prompt message processing.

♦

PSWAPM
This privilege allows the AIJSERVER to enable and disable process swapping, also necessary
to ensure prompt message processing.

♦

Oracle® Rdb for OpenVMS

5.1.18 AIJSERVER Privileges 106

SETPRV
This privilege allows the AIJSERVER to temporarily set any additional privileges it may
need to access the standby database or its server processes.

♦

SYSPRV
This privilege allows the AIJSERVER to access the standby database rootfile, if necessary.

♦

WORLD
This privilege allows the AIJSERVER to more accurately detect standby database server
process failure and handle network failure more reliably.

♦

5.1.19 Lock Remastering and Hot Standby

When using the Hot Standby feature, Oracle recommends that the VMS distributed lock manager
resource tree be mastered on the standby node where Hot Standby is started. This can be using any of
the following methods:

Disable dynamic lock remastering. This can be done dynamically by setting the SYSGEN
parameter PE1 to the value 1.
When using this option, be sure that Hot Standby is started on the node where the standby
database is first opened.

♦

Increasing the LOCKDIRWT value for the LRS node higher than any other node in the same
cluster. However, this is not a dynamic SYSGEN parameter, and a node re−boot is required.

♦

Failure to prevent dynamic lock remastering may cause severe performance degradation for the
standby database, which ultimately may be reflected by decreased master database transaction
throughput.

5.1.20 RDB_SETUP Privilege Error

Rdb Web Agent V3.0 exposes a privilege problem with Rdb V7.0 and later. This will be fixed in the
next Rdb 7.0 release.

The RDB_SETUP function fails with %RDB−E−NO_PRIV, privilege denied by database facility.

It appears that the only workaround is to give users DBADM privilege. Oracle Corporation does not
recommend giving users the DBADM privilege.

5.1.21 Starting Hot Standby on Restored Standby Database
May Corrupt Database

If a standby database is modified outside of Hot Standby, then backed up and restored, Hot Standby
will appear to start up successfully but will corrupt the standby database. A subsequent query of the
database will return unpredictable results, possibly in a bugcheck in
DIOFETCH$FETCH_ONE_LINE. When the standby database is restored from a backup of itself, the
database is marked as unmodified. Therefore, Hot Standby cannot tell whether the database had been
modified before the backup was taken.

WORKAROUND: None.

Oracle® Rdb for OpenVMS

5.1.19 Lock Remastering and Hot Standby 107

5.1.22 Restriction on Compound Statement Nesting Levels

The use of multiple nesting levels of compound statements such as CASE or IF−THEN−ELSE within
multistatement procedures can result in excessive memory usage during the compile of the procedure.
Virtual memory problems have been reported with 10 or 11 levels of nesting. The following example
shows an outline of the type of nesting that can lead to this problem.

CREATE MODULE MY_MOD LANGUAGE SQL
PROCEDURE MY PROCEDURE
 (PARAMETERS);

BEGIN
 DECLARE;

SET :VARS = 0;

SELECT;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG ! Case #1
 WHEN 100 THEN SET ...;
 WHEN −811 THEN SET ...;
 WHEN 0 THEN
 SET ...; SELECT ...;
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 CASE :FLAG ! Case #2
 WHEN 0 THEN SET ...;
 WHEN −811 THEN SET ...;
 WHEN 100 THEN
 UPDATE...; SET ...;
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #1
 ELSE
 IF :FLAG < 0 THEN SET...; ! #2
 ELSE
 DELETE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET...; ! #3
 SET ...;
 ELSE
 IF :FLAG < 0 THEN SET...; ! #4
 ELSE
 IF IN_CHAR_PARAM = 'S' THEN ! #5
 UPDATE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #6
 ELSE
 IF :FLAG < 0 THEN SET...; ! #7
 END IF; ! #7
 END IF; ! #6
 END IF; ! #5

 IF :FLAG = 0 THEN ! #5
 UPDATE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #6
 ELSE
 IF :FLAG < 0 THEN SET ...; ! #7
 ELSE
 DELETE ...

Oracle® Rdb for OpenVMS

5.1.22 Restriction on Compound Statement Nesting Levels 108

 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE:
 IF :FLAG= 100 THEN SET ...; ! #8
 ELSE
 IF :FLAG < 0 THEN SET ...; ! #9
 ELSE
 DELETE ...;
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #10
 SET ...;
 ELSE
 IF :FLAG < 0 THEN SET ...; ! #11
 END IF; (11 end if's for #11 − #1)
 ELSE SET ...;
 END CASE; ! Case #2
 ELSE SET ...;
 END CASE; ! Case #1
END;
END MODULE;

Workaround: Reduce the complexity of the multistatement procedure. Use fewer levels of compound
statement nesting by breaking the multistatement procedure into smaller procedures or by using the
CALL statement to execute nested stored procedures.

5.1.23 Back Up All AIJ Journals Before Performing a Hot
Standby Switchover Operation

Prior to performing a proper Hot Standby switchover operation from the old master database to the
new master database (old standby database), be sure to back up ALL AIJ journals.

If you do not back up the AIJ journals on the old master database prior to switchover, they will be
initialized by the Hot Standby startup operation, and you will not have a backup of those AIJ journals.

Failure to back up these journals may place your new master database at risk of not being able to be
recovered, requiring another fail−over in the event of system failure.

5.1.24 Concurrent DDL and Read−Only Transaction on the
Same Table Not Compatible

It is possible that a read−only transaction could generate a bugcheck at DIOBND$FETCH_AIP_ENT
+ 1C4 if there is an active, uncommitted transaction that is making metadata changes to the same
table. Analysis shows that the snapshot transaction is picking up stale metadata information.
Depending on what metatdata modifications are taking place, it is possible for metadata information
to be removed from the system tables but still exist in the snapshot file. When the read−only
transaction tries to use that information, it no longer exists and causes a bugcheck.

The following example shows the actions of the two transactions:

A: B:
attach
set transaction read write
 attach
 set transaction read only

Oracle® Rdb for OpenVMS

5.1.23 Back Up All AIJ Journals Before Performing a Hot Standby Switchover Operation 109

drop index emp_last_name
 select * from employees
 ...bugcheck...

The only workaround is to avoid running the two transactions together.

5.1.25 Oracle Rdb and the SRM_CHECK Tool

The Alpha Architecture Reference Manual, Third Edition (AARM) describes strict rules for using
interlocked memory instructions. The HP Alpha 21264 (EV6) processor and all future Alpha
processors are more stringent than their predecessors in their requirement that these rules be followed.
As a result, code that has worked in the past despite noncompliance may now fail when executed on
systems featuring the new 21264 processor.

Oracle Rdb Release 7.0.3 supports the HP Alpha 21264 (EV6) processor. Oracle has performed
extensive testing and analysis of the Rdb code to ensure that it is compliant with the rules for using
interlocked memory instructions.

However, customers using the HP supplied SRM_CHECK tool may find that several of the Oracle
Rdb images cause the tool to report potential alpha architecture violations. Although SRM_CHECK
can normally identify a code section in an image by the section's attributes, it is possible for
OpenVMS images to contain data sections with those same attributes. As a result, SRM_CHECK may
scan data as if it were code, and occasionally, a block of data may look like a noncompliant code
sequence. This is the case with the Oracle Rdb supplied images. There is no actual instruction stream
violation.

However, customers must use the SRM_CHECK tool on their own application executable image files.
It is possible that applications linked with very old version of Oracle Rdb (versions prior to Oracle
Rdb Release 6.0−05) could have included illegal interlocked memory instruction sequences produced
by very old versions of compilers. This code was included in the Oracle Rdb object library files for
some very old versions of Oracle Rdb.

If errant instruction sequences are detected in the objects supplied by the Oracle Rdb object libraries,
the correct action is to relink the application with a more−current version of Oracle Rdb.

Additional information about the HP Alpha 21264 (EV6) processor interlocked memory instructions
issues is available at:

http://www.openvms.digital.com/openvms/21264_considerations.html

5.1.26 Oracle RMU Checksum_Verification Qualifier

The Oracle Rdb RMU BACKUP database backup command includes a Checksum_Verification
qualifier.

Specifying Checksum_Verification requests that the RMU Backup command verify the checksum
stored on each database page before it is backed up, thereby providing end−to−end error detection on
the database I/O.

Oracle® Rdb for OpenVMS

5.1.25 Oracle Rdb and the SRM_CHECK Tool 110

The Checksum_Verification qualifier uses additional CPU resources but can provide an extra measure
of confidence in the quality of the data backed up. Use of the Checksum_Verification qualifier offers
an additional level of data security and use of the Checksum_Verification qualifier permits Oracle
RMU to detect the possibility that the data it is reading from these disks has only been partially
updated.

Note, however, that if you specify the Nochecksum_Verification qualifier, and undetected corruptions
exist in your database, the corruptions are included in your backup file and restored when you restore
the backup file. Such a corruption might be difficult to recover from, especially if it is not detected
until weeks or months after the restore operation is performed.

Oracle Corporation recommends that you use the Checksum_Verification qualifier with all database
backup operations because of the improved data integrity this qualifier provides.

Unfortunately, due to an oversight, for versions of Oracle Rdb prior to Version 8.0, the default for
online backups is the Nochecksum_Verification qualifier. When you do not specify the
Checksum_Verification qualifier on all of your RMU database backup commands.

5.1.27 Do Not Use HYPERSORT with
RMU/OPTIMIZE/AFTER_JOURNAL (Alpha)

OpenVMS Alpha V7.1 introduced the high−performance Sort/Merge utility (also known as
HYPERSORT). This utility takes advantage of the Alpha architecture to provide better performance
for most sort and merge operations.

The high−performance Sort/Merge utility supports a subset of the SOR routines. Unfortunately, the
high−performance Sort/Merge utility does not support several of the interfaces used by the
RMU/OPTIMIZE/AFTER_JOURNAL command. In addition, the high−performance Sort/Merge
utility reports no error or warning when being called with the unsupported options used by the
RMU/OPTIMIZE/AFTER_JOURNAL command.

For this reason, the use of the high−performance Sort/Merge utility is not supported for the
RMU/OPTIMIZE/AFTER_JOURNAL command. Do not define the logical name SORTSHR to
reference HYPERSORT.EXE.

5.1.28 Restriction on Using /NOONLINE with Hot Standby

When a user process is performing a read−only transaction on a standby database, an attempt to start
replication on the standby database with the /NOONLINE qualifier will fail with the following error,
and the database will be closed cluster−wide:

%RDMS−F−OPERCLOSE, database operator requested database shutdown

In a previous release, the following error was returned and the process doing the read−only
transaction was not affected:

%RDMS−F−STBYDBINUSE, standby database cannot be exclusively accessed for
replication

Oracle® Rdb for OpenVMS

5.1.27 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL (Alpha) 111

As a workaround, if exclusive access is necessary to the standby database, terminate any user
processes before starting replication with the /NOONLINE qualifier.

This restriction is due to another bug fix and will be lifted in a future release of Oracle Rdb.

5.1.29 SELECT Query May Bugcheck with
PSII2SCANGETNEXTBBCDUPLICATE Error

Bug 683916

A bugcheck could occur when a ranked B−tree index is used in a query after a database has been
upgraded to Release 7.0.1.3. This is a result of index corruption that was introduced in previous
versions of Oracle Rdb. This corruption has been fixed and indexes created using Release 7.0.1.3 will
not be impacted.

As a workaround, delete the affected index and re−create it under Oracle Rdb Release 7.0.1.3 or later.

5.1.30 DBAPack for Windows 3.1 is Deprecated

Oracle Enterprise Manager DBAPack will no longer be supported for use on Windows 3.1.

5.1.31 Determining Mode for SQL Non−Stored Procedures

Bug 506464.

Although stored procedures allow parameters to be defined with the modes IN, OUT, and INOUT,
there is no similar mechanism provided for SQL module language or SQL precompiled procedures.
However, SQL still associates a mode with a parameter using the following rules:

Any parameter which is the target of an assignment is considered an OUT parameter. Assignments
consist of the following:

The parameter is assigned a value with the SET or GET DIAGNOSTICS statement. For
example:

set :p1 = 0;
get diagnostics :p2 = TRANSACTION_ACTIVE;

♦

The parameter is assigned a value with the INTO clause of an INSERT, UPDATE, or
SELECT statement. For example:

insert into T (col1, col2)
 values (...)
 returning dbkey into :p1;

update accounts
 set account_balance = account_balance + :amount
 where account_number = :p1
 returning account_balance
 into :current_balance;

select last_name

♦

Oracle® Rdb for OpenVMS

5.1.29 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error 112

 into :p1
 from employees
 where employee_id = '00164';

The parameter is passed on a CALL statement as an OUT or INOUT argument. For example:

begin
call GET_CURRENT_BALANCE (:p1);
end;

♦

Any parameter that is the source for a query is considered an IN parameter. Query references include:

The parameter appears in the SELECT list, WHERE or HAVING clauses of a SELECT, or
DELETE statement. For example:

select :p1 || last_name, count(*)
 from T
 where last_name like 'Smith%'
 group by last_name
 having count(*) > :p2;

delete from T
 where posting_date < :p1;

♦

The parameter appears on the right side of the assignment in a SET statement or SET clause
of an UPDATE statement. For example:

set :p1 = (select avg(salary)
 from T
 where department = :p2);
update T
 set col1 = :p1
 where ...;

♦

The parameter is used to provide a value to a column in an INSERT statement. For example:

insert into T (col1, col2)
 values (:p1, :p2);

♦

The parameter is referenced by an expression in a TRACE, CASE, IF/ELSEIF, WHILE
statement, or by the DEFAULT clause of a variable declaration. For example:

begin
declare :v integer default :p1;
DO_LOOP:
while :p2 > :p1
loop
 if :p1 is null then
 leave DO_LOOP;
 end if;
 set :p2 = :p2 + 1;
 ...;
 trace 'Loop at ', :p2;
end loop;
end;

♦

The parameter is passed on a CALL statement as an INOUT or IN argument. For example:

begin
call SET_LINE_SPEED (:p1);
end;

♦

SQL only copies values from the client (application parameters) to the procedure running in the
database server if it is marked as either an IN or INOUT parameter. SQL only returns values from the

Oracle® Rdb for OpenVMS

5.1.29 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error 113

server to the client application parameter variables if the parameter is an OUT or INOUT parameter.

If a parameter is considered an OUT only parameter, then it must be assigned a value within the
procedure, otherwise the result returned to the application is considered undefined. This could occur if
the parameter is used within a conditional statement such as CASE or IF/ELSEIF. In the following
example, the value returned by :p2 would be undefined if :p1 were negative or zero:

begin
if :p1 > 0 then
 set :p2 = (select count(*)
 from T
 where col1 = :p1);
end if;
end;

It is the responsibility of the application programmer to ensure that the parameter is correctly assigned
values within the procedure. A workaround is to either explicitly initialize the OUT parameter, or
make it an INOUT parameter. For example:

begin
if :p1 > 0 then
 set :p2 = (select count(*)
 from T
 where col1 = :p1);
elseif :p2 is null then
 begin
 end;
end if;
end;

The empty statement will include a reference to the parameter to make it an IN parameter as well as
an OUT parameter.

5.1.32 DROP TABLE CASCADE Results in
%RDB−E−NO_META_UPDATE Error

An error could result when a DROP TABLE CASCADE statement is issued. This occurs when the
following conditions apply:

A table is created with an index defined on the table.♦
A storage map is created with a placement via index.♦
The storage map is a vertical record partition storage map with two or more STORE
COLUMNS clauses.

♦

The error message given is %RDB−E−NO_META_UPDATE, metadata update failed.

The following example shows a table, index, and storage map definition followed by a DROP
TABLE CASCADE statement and the resulting error message:

SQL> CREATE TABLE VRP_TABLE (ID INT, ID2 INT);
SQL> COMMIT;
SQL> CREATE UNIQUE INDEX VRP_IDX ON VRP_TABLE (ID)
SQL> STORE IN EMPIDS_LOW;
SQL> COMMIT;
SQL> CREATE STORAGE MAP VRP_MAP

Oracle® Rdb for OpenVMS

5.1.32 DROP TABLE CASCADE Results in %RDB−E−NO_META_UPDATE Error 114

cont> FOR VRP_TABLE
cont> PLACEMENT VIA INDEX VRP_IDX
cont> ENABLE COMPRESSION
cont> STORE COLUMNS (ID)
cont> IN EMPIDS_LOW
cont> STORE COLUMNS (ID2)
cont> IN EMPIDS_MID;
SQL> COMMIT;
SQL>
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> −− Index VRP_IDX is also being dropped.
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−WISH_LIST, feature not implemented yet
−RDMS−E−VRPINVALID, invalid operation for storage map "VRP_MAP"

The workaround to this problem is to first delete the storage map, and then delete the table using the
CASCADE option. The following example shows the workaround. The SHOW statement indicates
that the table, index, and storage map were deleted:

SQL> DROP STORAGE MAP VRP_MAP;
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> −− Index VRP_IDX is also being dropped.
SQL> COMMIT;
SQL> SHOW TABLE VRP_TABLE
No tables found
SQL> SHOW INDEX VRP_IDX
No indexes found
SQL> SHOW STORAGE MAP VRP_MAP
No Storage Maps Found

This problem will be corrected in a future version of Oracle Rdb.

5.1.33 Bugcheck Dump Files with Exceptions at
COSI_CHF_SIGNAL

In certain situations, Oracle Rdb bugcheck dump files will indicate an exception at
COSI_CHF_SIGNAL. This location is, however, not the address of the actual exception. The actual
exception occurred at the previous call frame on the stack (the one listed as the next "Saved PC" after
the exception).

For example, consider the following bugcheck file stack information:

 $ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","−F−","−E−"

 ***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
 %COSI−F−BUGCHECK, internal consistency failure
 Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
 Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C
 Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC
 Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0
 .
 .
 .

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset 00000318. If you
have a bugcheck dump with an exception at COSI_CHF_SIGNAL, it is important to note the next

Oracle® Rdb for OpenVMS

5.1.33 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL 115

"Saved PC" because it will be needed when working with Oracle Rdb Support Services.

5.1.34 Interruptions Possible when Using Multistatement or
Stored Procedures

Long running multistatement or stored procedures can cause other users in the database to be
interrupted by holding resources needed by those other users. Some resources obtained by the
execution of a multistatement or stored procedure will not be released until the multistatement or
stored procedure finishes. This problem can be encountered even if the statement contains COMMIT
or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop; the second
session attempts to backup the database, but it is permanently interrupted:

Session 1

SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> CREATE FUNCTION LIB$WAIT (IN REAL BY REFERENCE)
cont> RETURNS INT;
cont> EXTERNAL NAME LIB$WAIT
cont> LOCATION 'SYS$SHARE:LIBRTL.EXE'
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> COMMIT;
SQL> EXIT;

$ SQL
SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> BEGIN
cont> DECLARE :LAST_NAME LAST_NAME_DOM;
cont> DECLARE :WAIT_STATUS INTEGER;
cont> LOOP
cont> SELECT LAST_NAME INTO :LAST_NAME
cont> FROM EMPLOYEES WHERE EMPLOYEE_ID = '00164';
cont> ROLLBACK;
cont> SET :WAIT_STATUS = LIB$WAIT (5.0);
cont> SET TRANSACTION READ ONLY;
cont> END LOOP;
cont> END;

Session 2

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session we can see that the backup process is waiting for a lock held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
==
SHOW LOCKS/BLOCKING Information
==

−−
Resource: nowait signal

Oracle® Rdb for OpenVMS

5.1.34 Interruptions Possible when Using Multistatement or Stored Procedures 116

 ProcessID Process Name Lock ID System ID Requested Granted
 −−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−
Waiting: 20204383 RMU BACKUP..... 5600A476 00010001 CW NL
Blocker: 2020437B SQL............ 3B00A35C 00010001 PR PR
$

There is no workaround for this restriction. When the multistatement or stored procedure finishes
execution, the resources needed by other processes will be released.

5.1.35 Row Cache Not Allowed on Standby Database While
Hot Standby Replication Is Active

The row cache feature may not be active on a Hot Standby database while replication is taking place.
The Hot Standby feature will not start if row cache is active on the standby database.

This restriction exists because rows in the row cache are accessed using logical dbkeys. However,
information transferred to the Hot Standby database from the after−image journal facility only
contains physical dbkeys. Because there is no way to maintain rows in the cache using the Hot
Standby processing, the row cache must be disabled on the standby database when the standby
database is open and replication is active. The master database is not affected; the row cache feature
and the Hot Standby feature may be used together on a master database.

The row cache feature should be identically configured on the master and standby databases in the
event failover occurs, but the row cache feature must not be activated on the standby database until it
becomes the master.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU/OPEN
command to disable the row cache feature on the standby database. To open the Hot Standby database
prior to starting replication, use the ROW_CACHE=DISABLED qualifier on the RMU/OPEN
command.

5.1.36 Hot Standby Replication Waits when Starting if
Read−Only Transactions Running

Hot Standby replication will wait to start if there are read−only (snapshot) transactions running on the
standby database. The log roll−forward server (LRS) will wait until the read−only transactions
commit, and then replication will continue.

This is an existing restriction of the Hot Standby software. This release note is intended to
complement the Hot Standby documentation.

5.1.37 Error when Using the
SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle Functions
Script

If your programming environment is not set up correctly, you may encounter problems running the
SYS$LIBRARY:SQL_FUNCTIONS70.SQL script used to set up the Oracle7 functions being
supplied with Oracle Rdb.

Oracle® Rdb for OpenVMS

5.1.35 Row Cache Not Allowed on Standby Database While Hot Standby Replication Is Active 117

The following example shows the error:

%RDB−E−EXTFUN_FAIL, external routine failed to compile or execute successfully
−RDMS−E−INVRTNUSE, routine RDB$ORACLE_SQLFUNC_INTRO can not be used, image
"SQL$FUNCTIONS" not activated
−RDMS−I−TEXT, Error activating image
DISK:[DIR]SQL$FUNCTIONS.;, File not found

To resolve this problem, use the @SYS$LIBRARY:RDB$SETVER to set up the appropriate logical
names. This will be necessary for programs that use the functions as well.

In a standard environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER S

In a multiversion environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER 70

5.1.38 DEC C and Use of the /STANDARD Switch

Bug 394451

The SQL$PRE compiler examines the system to know which dialect of C to generate. That default
can be overwritten by using the /CC=[DECC/VAXC] switch. The /STANDARD switch should not be
used to choose the dialect of C.

Support for DEC C was added to the product with V6.0 and this note is meant to clarify that support,
not to indicate a change. It is possible to use /STANDARD=RELAXED_ANSI89 or
/STANDARD=VAXC correctly, but this is not recommended.

The following example shows both the right and wrong way to compile an Oracle Rdb SQL program.
Assume a symbol SQL$PRE has been defined, and DEC C is the default C compiler on the system:

 $ SQL$PRE/CC ! This is correct.
 $ SQL$PRE/CC=DECC ! This is correct.
 $ SQL$PRE/CC=VAXC ! This is correct.

 $ SQL$PRE/CC/STANDARD=VAXC ! This is incorrect.

Notice that the /STANDARD switch has other options in addition to RELAXED_ANSI89 and :VAX
C. Those are also not supported.

5.1.39 Excessive Process Page Faults and Other
Performance Considerations During Oracle Rdb Sorts

Oracle® Rdb for OpenVMS

5.1.38 DEC C and Use of the /STANDARD Switch 118

Excessive hard or soft page faulting can be a limiting factor of process performance. Sometimes this
page faulting occurs during Oracle Rdb sort operations. This note describes how page faulting can
occur and some ways to help control, or at least understand, it.

One factor contributing to Oracle Rdb process page faulting is sorting operations. Common causes of
sorts include the SQL GROUP BY, ORDER BY, UNION, and DISTINCT clauses specified for query
and index creation operations. Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help
determine when Oracle Rdb sort operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb images and
does not generally call the routines in the OpenVMS run−time library. A copy of the SORT32 code is
used to provide stability between versions of Oracle Rdb and OpenVMS and because Oracle Rdb
calls the sort routines from executive processor mode which is difficult to do using the SORT32
sharable image. Database import and RMU load operations call the OpenVMS sort run−time library.

At the beginning of a sort operation, the sort code allocates some memory for working space. The sort
code uses this space for buffers, in−memory copies of the data, and sorting trees.

Sort code does not directly consider the process quotas or parameters when allocating memory. The
effects of WSQUOTA and WSEXTENT are indirect. At the beginning of each sort operation, the sort
code attempts to adjust the process' working set to the maximum possible size using the $ADJWSL
system service specifying a requested working set limit of %X7FFFFFFF pages (the maximum
possible). Sort code then uses a value of 75% of the returned working set for virtual memory scratch
space. The scratch space is then initialized and the sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly added to
the working set. Pages that were in the working set already may be faulted out as new pages are
faulted in. Once the sort operation completes, the pages that may have been faulted out of the working
set are likely to be faulted back into the working set.

When a process' working set is limited by the working set quota (WSQUOTA) parameter and the
working set extent (WSEXTENT) parameter is a much larger value, the first call to the sort routines
can cause many page faults as the working set grows. Using a value of WSEXTENT that is closer to
WSQUOTA can help reduce the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_MWSEXTENT equal
to the WSMAX parameter. This means that all processes on the system end up with WSEXTENT the
same as WSMAX. Because WSMAX might be quite high, sorting might result in excessive page
faulting. You may want to explicitly set PQL_MWSEXTENT to a lower value if this is the case on
your system.

Sort work files are another factor to consider when tuning Oracle Rdb sort operations. When the
operation cannot be done in available memory, sort code will use temporary disk files to hold the data
as it is being sorted. The Oracle Rdb Guide to Performance and Tuning contains more detailed
information about sort work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort code is to
use if work files are required. The default is 2, and the maximum number is 10. The work files can be
individually controlled by the SORTWORKn logical names (where n is from 0 through 9). You can
increase the efficiency of sort operations by assigning the location of the temporary sort work files to
different disks. These assignments are made by using up to 10 logical names, SORTWORK0 through

Oracle® Rdb for OpenVMS

5.1.38 DEC C and Use of the /STANDARD Switch 119

SORTWORK9.

Normally, sort code places work files in the user's SYS$SCRATCH directory. By default,
SYS$SCRATCH is the same device and directory as the SYS$LOGIN location. Spreading the I/O
load over many disks improves efficiency as well as performance by taking advantage of the system
resources and helps prevent disk I/O bottlenecks. Specifying that a user's work files will reside on
separate disks permits overlap of the sort read/write cycle. You may also encounter cases where
insufficient space exists on the SYS$SCRATCH disk device, such as when Oracle Rdb builds indexes
for a very large table. Using the SORTWORK0 through SORTWORK9 logical names can help you
avoid this problem.

Note that sort code uses the work files for different sorted runs, and then merges the sorted runs into
larger groups. If the source data is mostly sorted, then not every sort work file may need to be
accessed. This is a possible source of confusion because even with 10 sort work files, it is possible to
exceed the capacity of the first sort file, and the sort operation will fail never having accessed the
remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE do not
affect or control the operation of sort. These logical names are used to control other temporary space
allocations within Oracle Rdb.

5.1.40 Performance Monitor Column Mislabeled

The File IO Overview statistics screen, in the Rdb Performance Monitor, contains a column labeled
Pages Checked. The column should be labeled Pages Discarded to correctly reflect the statistic
displayed.

5.1.41 Restriction Using Backup Files Created Later than
Oracle Rdb Release 7.0.1

Bug 521583

Backup files created using Oracle Rdb releases later than 7.0.1 cannot be restored using Oracle Rdb
Release 7.0.1. To fix a problem in a previous release, some internal backup file data structures were
changed. These changes are not backward compatible with Oracle Rdb Release 7.0.1.

If you restore the database using such a backup file, then any attempt to access the restored database
may result in unpredictable behavior, even though a verify operation may indicate no problems.

There is no workaround to this problem. For this reason, Oracle Corporation strongly recommends
performing a full and complete backup both before and after the upgrade from Release 7.0.1 to later
releases of Oracle Rdb.

5.1.42 RMU Backup Operations and Tape Drive Types

When using more than one tape drive for an RMU backup operation, all the tape drives must be of the
same type. For example, all the tape drives must be either TA90s or TZ87s or TK50s. Using different
tape drive types (one TK50 and one TA90) for a single database backup operation may make database
restoration difficult or impossible.

Oracle® Rdb for OpenVMS

5.1.40 Performance Monitor Column Mislabeled 120

Oracle RMU attempts to prevent using different tape drive densities during a backup operation, but is
not able to detect all invalid cases and expects that all tape drives for a backup are of the same type.

As long as all the tapes used during a backup operation can be read by the same type of tape drive
during a restore operation, the backup is likely to be valid. This may be the case, for example, when
using a TA90 and a TA90E.

Oracle recommends that, on a regular basis, you test your backup and recovery procedures and
environment using a test system. You should restore the databases and then recover them using AIJs
to simulate failure recovery of the production system.

Consult the Oracle Rdb Guide to Database Maintenance, the Oracle Rdb Guide to Database Design
and Definition, and the Oracle RMU Reference Manual for additional information about Oracle Rdb
backup and restore operations.

5.1.43 Use of Oracle Rdb from Shared Images

Bug 470946

If code in the image initialization routine of a shared image makes any calls into Oracle Rdb, through
SQL or any other means, access violations or other unexpected behavior may occur if Oracle Rdb's
images have not had a chance to do their own initialization.

To avoid this problem, applications must do one of the following:

Do not make Oracle Rdb calls from the initialization routines of shared images.♦
Link in such a way that the RDBSHR.EXE image initializes first. This can be done by placing
the reference to RDBSHR.EXE and any other Oracle Rdb shared images last in the linker
options file.

♦

5.1.44 Restriction Added for CREATE STORAGE MAP on
Table with Data

Oracle Rdb Releease 7.0 added support that allows a storage map to be added to an existing table
which contains data. The restrictions listed for Oracle Rdb Release 7.0 were:

The storage map must be a simple map that references only the default storage area and
represents the current (default) mapping for the table. The default storage area is either
RDB$SYSTEM or the area name provided by the CREATE DATABASE...DEFAULT
STORAGE AREA clause.

♦

The new map cannot change THRESHOLDS or COMPRESSION for the table, nor can it use
the PLACEMENT VIA INDEX clause. It can only contain one area and cannot be vertically
partitioned. This new map simply describes the mapping as it exists by default for the table.

♦

This release of Rdb adds the additional restriction that the storage map may not include a WITH
LIMIT clause for the storage area. The following example shows the reported error:

SQL> CREATE TABLE MAP_TEST1 (A INTEGER, B CHAR(10));
SQL> CREATE INDEX MAP_TEST1_INDEX ON MAP_TEST1 (A);
SQL> INSERT INTO MAP_TEST1 (A, B) VALUES (3, 'Third');
1 row inserted

Oracle® Rdb for OpenVMS

5.1.43 Use of Oracle Rdb from Shared Images 121

SQL> CREATE STORAGE MAP MAP_TEST1_MAP FOR MAP_TEST1
cont> STORE USING (A) IN RDB$SYSTEM
cont> WITH LIMIT OF (10); −− can't use WITH LIMIT clause
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−RELNOTEMPTY, table "MAP_TEST1" has data in it
−RDMS−E−NOCMPLXMAP, can not use complex map for non−empty table

5.1.45 Oracle Rdb Workload Collection Can Stop Hot
Standby Replication

If you are replicating your Oracle Rdb database using the Oracle Hot Standby option, you must not
use the workload collection option. By default, workload collection is disabled. However, if you
enabled workload collection, you must disable it on the master database prior to performing a backup
operation on that master database if it will be used to create the standby database for replication
purposes. If you do not disable workload collection, it could write workload information to the
standby database and prevent replication operations from occurring.

The workaround included at the end of this section describes how to disable workload collection on
the master database and allow the Hot Standby software to propagate the change to the standby
database automatically during replication operations.

Background Information

By default, workload collection and cardinality collection are automatically disabled when Hot
Standby replication operations are occurring on the standby database. However, if replication stops
(even for a brief network failure), Oracle Rdb potentially can start a read/write transaction on the
standby database to write workload collection information. Then, because the standby database is no
longer synchronized transactionally with the master database, replication operations cannot restart.

Note

The Oracle Rdb optimizer can update workload collection information in the
RDB$WORKLOAD system table even though the standby database is opened
exclusively for read−only queries. A read/write transaction is started during the
disconnection from the standby database to flush the workload and cardinality
statistics to the system tables.

If the standby database is modified, you receive the following messages when you try to restart Hot
Standby replication operations:

%RDMS−F−DBMODIFIED, database has been modified; AIJ roll−forward not possible
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.

Workaround

To work around this problem, perform the following:

On the master database, disable workload collection using the SQL clause WORKLOAD
COLLECTION IS DISABLED on the ALTER DATABASE statement. For example:

♦

Oracle® Rdb for OpenVMS

5.1.45 Oracle Rdb Workload Collection Can Stop Hot Standby Replication 122

SQL> ALTER DATABASE FILE mf_personnel
cont> WORKLOAD COLLECTION IS DISABLED;

This change is propagated to the standby database automatically when you restore the standby
database and restart replication operations. Note that, by default, the workload collection
feature is disabled. You need to disable workload collection only if you previously enabled
workload collection with the WORKLOAD COLLECTION IS ENABLED clause.
On the standby database, include the Transaction_Mode qualifier on the RMU/Restore
command when you restore the standby database. You should set this qualifier to read−only
to prevent modifications to the standby database when replication operations are not active.
The following example shows the Transaction_Mode qualifier used in a typical RMU/Restore
command:

$ RMU/RESTORE /TRANSACTION_MODE=READ_ONLY
 /NOCDD
 /NOLOG
 /ROOT=DISK1:[DIR]standby_personnel.rdb
 /AIJ_OPT=aij_opt.dat
 DISK1:[DIR]standby_personnel.rbf

♦

If, in the future, you fail over processing to the standby database (so that the standby database
becomes the master database), you can re−enable updates to the "new" master database. For example,
to re−enable updates, use the SQL statement ALTER DATABASE and include the SET
TRANSACTION MODES (ALL) clause. The following example shows this statement used on the
new master database:

SQL> ALTER DATABASE FILE mf_personnel
cont> SET TRANSACTION MODES (ALL);

5.1.46 RMU Convert Command and System Tables

When the RMU Convert command converts a database from a previous version to Oracle Rdb V7.0
or higher, it sets the RDB$CREATED and RDB$LAST_ALTERED columns to the timestamp of the
convert operation.

The RDB$xxx_CREATOR columns are set to the current user name (which is space filled) of the
converter. Here xxx represents the object name, such as in RDB$TRIGGER_CREATOR.

The RMU Convert command also creates the new index on RDB$TRANSFER_RELATIONS if the
database is transfer enabled.

5.1.47 Converting Single−File Databases

Because of a substantial increase in the database root file information for Release 7.0, you should
ensure that you have adequate disk space before you use the RMU Convert command with single−file
databases and Release 7.0 or higher.

The size of the database root file of any given database will increase a minimum of 13 blocks and a
maximum of 597 blocks. The actual increase depends mostly on the maximum number of users
specified for the database.

Oracle® Rdb for OpenVMS

5.1.46 RMU Convert Command and System Tables 123

5.1.48 Restriction when Adding Storage Areas with Users
Attached to Database

If you try to interactively add a new storage area where the page size is smaller than the smallest
existing page size and the database has been manually opened or users are active, the add operation
fails with the following error:

%RDB−F−SYS_REQUEST, error from system services request
−RDMS−F−FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
−SYSTEM−W−ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and, if the database is set
to OPEN IS MANUAL, the database is closed. Several internal Oracle Rdb data structures are based
on the minimum page size, and these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ file, any recovery scenario will
fail. Note also that if you use .aij files, you must backup the database and restart after−image
journaling because this change invalidates the current AIJ recovery.

5.1.49 Support for Single−File Databases to be Dropped in a
Future Release

Oracle Rdb currently supports both single−file and multifile databases on OpenVMS. However,
single−file databases will not be supported in a future release of Oracle Rdb. At that time, Oracle Rdb
will provide the means to easily convert single−file databases to multifile databases.

Oracle recommends that users with single−file databases perform the following actions:

Use the Oracle RMU commands, such as Backup and Restore, to make copies, back up, or
move single−file databases. Do not use operating system commands to copy, back up, or
move databases.

♦

Create new databases as multifile databases even though single−file databases are supported
in Oracle Rdb release 6.1 and release 7.0.

♦

5.1.50 DECdtm Log Stalls

Resource managers using the DECdtm services can sometimes suddenly stop being able to commit
transactions. If Oracle Rdb is installed and transactions are being run, an RMU Show command on the
affected database will show transactions as being "stalled, waiting to commit".

Refer to the DECdtm documentation and release notes for information on symptoms, fixes, and
workarounds for this problem. One workaround, for OpenVMS V5.5−x, is provided here.

On the affected node while the log stall is in progress, type the following command from a privileged
account:

$ MCR LMCP SET NOTIMEZONE

Oracle® Rdb for OpenVMS

5.1.48 Restriction when Adding Storage Areas with Users Attached to Database 124

This should force the log to restart.

This stall occurs only when a particular bit in a pointer field becomes set. To see the value of the
pointer field, enter the following command from a privileged account (where <nodename> is the SCS
node name of the node in question).

$ MCR LMCP DUMP/ACTIVE/NOFORM SYSTEM$<nodename>

This command displays output similar to the following:

Dump of transaction log SYS$COMMON:[SYSEXE]SYSTEM$<nodename>.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 29551FC0−CBB7−11CC−8001−AA000400B7A5
Penultimate Checkpoint: 000013FD4479 0079
Last Checkpoint: 000013FDFC84 0084

Total of 2 transactions active, 0 prepared and 2 committed.

The stall will occur when bit 31 of the checkpoint address becomes set, as this excerpt from the
previous example shows:

 Last Checkpoint: 000013FDFC84 0084
 ^
 |

When the number indicated in the example becomes 8, the log will stall. Check this number and
observe how quickly it grows. When it is at 7FFF, frequently use the following command:

$ MCR LMCP SHOW LOG /CURRENT

If this command shows a stall in progress, use the workaround to restart the log.

See your HP Computer Corporation representative for information about patches to DECdtm.

5.1.51 Cannot Run Distributed Transactions on Systems
with DECnet/OSI and OpenVMS Alpha Version 6.1 or
OpenVMS VAX Version 6.0

If you have DECnet/OSI installed on a system with OpenVMS Alpha Version 6.1 or OpenVMS
VAX Version 6.0, you cannot run Oracle Rdb operations that require the two−phase commit protocol.
The two−phase commit protocol guarantees that if one operation in a distributed transaction cannot be
completed, none of the operations is completed.

If you have DECnet/OSI installed on a system running OpenVMS VAX Version 6.1 or higher or
OpenVMS Alpha Version 6.2 or higher, you can run Oracle Rdb operations that require the
two−phase commit protocol.

For more information about the two−phase commit protocol, see the Oracle Rdb Guide to Distributed
Transactions.

Oracle® Rdb for OpenVMS

5.1.51 Cannot Run Distributed Transactions on Systems with DECnet/OSI and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0125

5.1.52 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk becomes
inconsistent and is detected immediately during failover. (Failover is the recovery of an application by
restarting it on another computer.) The problem is rare and occurs because only single−block I/O
operations are guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area−level restore operation. Database integrity is not compromised, but the
affected area will not be available until the restore operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock atomic write
operations. Cluster failovers will automatically cause the recovery of multiblock pages, and no
manual intervention will be required.

5.1.53 Replication Option Copy Processes Do Not Process
Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data Distributor)
begins running after an application has begun modifying the database, the copy processes will catch
up to the application and will not be able to process database pages that are logically ahead of the
application in the RDB$CHANGES system table. The copy processes all align waiting for the same
database page and do not move on until the application has released it. The performance of each copy
process degrades because it is being paced by the application.

When a copy process completes updates to its respective remote database, it updates the
RDB$TRANSFERS system table and then tries to delete any RDB$CHANGES rows not needed by
any transfers. During this process, the RDB$CHANGES table cannot be updated by any application
process, holding up any database updates until the deletion process is complete. The application stalls
while waiting for the RDB$CHANGES table. The resulting contention for RDB$CHANGES SPAM
pages and data pages severely impacts performance throughput, requiring user intervention with
normal processing.

This is a known restriction in Release 4.0 and higher. Oracle Rdb uses page locks as latches. These
latches are held only for the duration of an action on the page and not to the end of transaction. The
page locks also have blocking asynchronous system traps (ASTs) associated with them. Therefore,
whenever a process requests a page lock, the process holding that page lock is sent a blocking AST
(BLAST) by OpenVMS. The process that receives such a blocking AST queues the fact that the page
lock should be released as soon as possible. However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time. An Oracle Rdb verb is an
Oracle Rdb query that executes atomically, within a transaction. Therefore, verbs that require the scan
of a large table, for example, can be quite long. An updating application does not release page locks
until its verb has completed.

The reasons for holding on to the page locks until the end of the verb are fundamental to the database
management system.

Oracle® Rdb for OpenVMS

5.1.52 Multiblock Page Writes May Require Restore Operation 126

5.1.54 SQL Does Not Display Storage Map Definition After
Cascading Delete of Storage Area

When you delete a storage area using the CASCADE keyword and that storage area is not the only
area to which the storage map refers, the SHOW STORAGE MAP statement no longer shows the
placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
 DEGREES_MAP1
 For Table: DEGREES1
 Compression is: ENABLED
 Partitioning is: NOT UPDATABLE
 Store clause: STORE USING (EMPLOYEE_ID)
 IN DEG_AREA WITH LIMIT OF ('00250')
 OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;
SQL> −− Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> −−
SQL> −− Display the storage map definition.
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SHOW STORAGE MAP DEGREES_MAP1
 DEGREES_MAP1
 For Table: DEGREES1
 Compression is: ENABLED
 Partitioning is: NOT UPDATABLE

SQL>

The other storage area, DEG_AREA2, still exists, even though the SHOW STORAGE MAP
statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map qualifier to see the
mapping.

5.1.55 ARITH_EXCEPT or Incorrect Results Using LIKE
IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb Release 4.2 and Release
5.1, but run under higher versions of Oracle Rdb, may result in incorrect results or
%RDB−E−ARITH_EXCEPT exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE, or recompile and relink under
a higher version (Release 6.0 or higher.)

5.1.56 Different Methods of Limiting Returned Rows from
Queries

Oracle® Rdb for OpenVMS

5.1.54 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area 127

You can establish the query governor for rows returned from a query by using the SQL SET QUERY
LIMIT statement, a logical name, or a configuration parameter. This note describes the differences
between the mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name or
RDB_BIND_QG_REC_LIMIT configuration parameter to a small value, the query will often
fail with no rows returned. The following example demonstrates setting the limit to 10 rows
and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB−F−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process the SELECT
statement. In this example, interactive SQL loads its metadata cache to allow it to check that
the column EMPLOYEE_ID really exists for the table. The queries on the Oracle Rdb system
tables RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.
Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the limit to
a number less than 100 (the cardinality of EMPLOYEES) but more than the number of
columns in EMPLOYEES (that is, the number of rows to read from the
RDB$RELATION_FIELDS system table) is sufficient to read each column definition.
To see an indication of the queries executed against the system tables, define the
RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS configuration
parameter as S or B.

♦

If you set the row limit using the SQL SET QUERY statement and run the same query, it
returns the number of rows specified by the SQL SET QUERY statement before failing:

SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SET QUERY LIMIT ROWS 10;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID
00164
00165

.

.

.
00173
%RDB−E−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows. Therefore,
the queries used to load the metadata cache are not restricted in any way.
Like the SET QUERY LIMIT statement, the SQL precompiler and module processor
command line qualifiers (QUERY_MAX_ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

♦

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT or the configuration parameter RDB_BIND_QG_REC_LIMIT.
They may limit more queries than are obvious. This is important when using 4GL tools, the SQL
precompiler, the SQL module processor, and other interfaces that read the Oracle Rdb system tables

Oracle® Rdb for OpenVMS

5.1.54 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area 128

as part of query processing.

5.1.57 Suggestions for Optimal Usage of the SHARED
DATA DEFINITION Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

Process the metadata.1.
Lock the index name.
Because new metadata (which includes the index name) is not written to disk until the end of
the index process, Oracle Rdb must ensure index name uniqueness across the database during
this time by taking a special lock on the provided index name.

2.

Read the table for sorting by selected index columns and ordering.3.
Sort the key data.4.
Build the index (includes partitioning across storage areas).5.
Write new metadata to disk.6.

Step 6 is the point of conflict with other index definers because the system table and indexes are
locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING table_name FOR
SHARED DATA DEFINITION clause of the SET TRANSACTION statement. For optimal usage of
this capability, Oracle Rdb suggests the following guidelines:

You should commit the transaction immediately after the CREATE INDEX statement so that
locks on the table are released. This avoids lock conflicts with other index definers and
improves overall concurrency.

♦

By assigning the location of the temporary sort work files SORTWORK0, SORTWORK1, ...,
SORTWORK9 to different disks for each parallel process that issues the SHARED DATA
DEFINITION statement, you can increase the efficiency of sort operations. This minimizes
any possible disk I/O bottlenecks and allows overlap of the SORT read/write cycle.

♦

If possible, enable global buffers and specify a buffer number large enough to hold a
sufficient amount of table data. However, do not define global buffers larger than the
available system physical memory. Global buffers allow sharing of database pages and thus
result in disk I/O savings. That is, pages are read from disk by one of the processes and then
shared by the other index definers for the same table, reducing the I/O load on the table.

♦

If global buffers are not used, ensure that enough local buffers exist to keep much of the
index cached (use the RDM$BIND_BUFFERS logical name or RDB_BIND_BUFFERS
configuration parameter or the NUMBER OF BUFFERS IS clause in SQL to change the
number of buffers).

♦

To distribute the disk I/O load, place the storage areas for the indexes on separate disk drives.
Note that using the same storage area for multiple indexes will result in contention during the
index creation (Step 5) for SPAM pages.

♦

Consider placing the .ruj file for each parallel definer on its own disk or an infrequently used
disk.

♦

Even though snapshot I/O should be minimal, consider disabling snapshots during parallel
index creation.

♦

Refer to the Oracle Rdb Guide to Performance and Tuning to determine the appropriate
working set values for each process to minimize excessive paging activity. In particular,
avoid using working set parameters where the difference between WSQUOTA and
WSEXTENT is large. The SORT utility uses the difference between these two values to

♦

Oracle® Rdb for OpenVMS

5.1.57 Suggestions for Optimal Usage of the SHARED DATA DEFINITION Clause for Parallel Index Creation129

allocate scratch virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page faulting.
The performance benefits of using SHARED DATA DEFINITION can best be observed
when creating many indexes in parallel. The benefit is in the average elapsed time, not in
CPU or I/O usage. For example, when two indexes are created in parallel using the SHARED
DATA DEFINITION clause, the database must be attached twice, and the two attaches each
use separate system resources.

♦

Using the SHARED DATA DEFINITION clause on a single−file database or for indexes
defined in the RDB$SYSTEM storage area is not recommended.

♦

The following table displays the elapsed time benefit when creating multiple indexes in parallel with
the SHARED DATA DEFINITION clause. The table shows the elapsed time for 10 parallel process
index creations (Index1, Index2,...Index10) and one process with 10 sequential index creations
(All10). In this example, global buffers are enabled and the number of buffers is 500. The longest
time for a parallel index creation is Index7 with an elapsed time of 00:02:34.64, compared to creating
10 indexes sequentially with an elapsed time of 00:03:26.66. The longest single parallel create index
elapsed time is shorter than the elapsed time of creating all 10 of the indexes serially.

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All 10 00:03:26.66

5.1.58 Side Effect when Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate argument values by a
stored function. For example, if the routine being called is also called by a stored function during the
calculation of an argument value, passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the calculation of the
arguments for another invocation of the stored procedure P:

SQL> CREATE MODULE M
cont> LANGUAGE SQL
cont>
cont> PROCEDURE P (IN :A INTEGER, IN :B INTEGER, OUT :C INTEGER);
cont> BEGIN
cont> SET :C = :A + :B;
cont> END;
cont>
cont> FUNCTION F () RETURNS INTEGER

Oracle® Rdb for OpenVMS

5.1.58 Side Effect when Calling Stored Routines 130

cont> COMMENT IS 'expect F to always return 2';
cont> BEGIN
cont> DECLARE :B INTEGER;
cont> CALL P (1, 1, :B);
cont> TRACE 'RETURNING ', :B;
cont> RETURN :B;
cont> END;
cont> END MODULE;
SQL>
SQL> SET FLAGS 'TRACE';
SQL> BEGIN
cont> DECLARE :CC INTEGER;
cont> CALL P (2, F(), :CC);
cont> TRACE 'Expected 4, got ', :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written to the called routine's
parameter area before complex expression values are calculated. These calculations may (as in the
example) overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the stored function F) to
a temporary variable and pass this variable as the input for the routine. The following example shows
the workaround:

SQL> BEGIN
cont> DECLARE :BB, :CC INTEGER;
cont> SET :BB = F();
cont> CALL P (2, :BB, :CC);
cont> TRACE 'Expected 4, got ', :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

5.1.59 Considerations when Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or ROLLBACK statement
is executed, the result set selected by the cursor may not remain stable. That is, rows may be inserted,
updated, and deleted by other users because no locks are held on the rows selected by the holdable
cursor after a commit or rollback occurs. Moreover, depending on the access strategy, rows not yet
fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a concurrent user
environment:

If the access strategy forces Oracle Rdb to take a data snapshot, the data read and cached may
be inaccurate by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2 deletes rows read by
user 1 (this is possible because the read locks are released). It is possible for user 1 to report
data now deleted and committed.

♦

If the access strategy uses indexes that allow duplicates, updates to the duplicates chain may♦

Oracle® Rdb for OpenVMS

5.1.59 Considerations when Using Holdable Cursors 131

cause rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the data that was
fetched. However, the duplicates chain could be revised by the time Oracle Rdb returns to
using it.

Holdable cursors are a very powerful feature for read−only or predominantly read−only
environments. However, in concurrent update environments, the instability of the cursor may not be
acceptable. The stability of holdable cursors for update environments will be addressed in future
versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP or configuration
parameter RDB_BIND_HOLD_CURSOR_SNAP to the value 1 to force all hold cursors to fetch the
result set into a cached data area. (The cached data area appears as a "Temporary Relation" in the
optimizer strategy displayed by the SET FLAGS STRATEGY statement or the
RDMS$DEBUG_FLAGS S flag.) This logical name or configuration parameter helps to stabilize the
cursor to some degree.

5.1.60 INCLUDE SQLDA2 Statement Is Not Supported for
SQL Precompiler for PL/I in Oracle Rdb Release 5.0 or
Higher

The SQL statement INCLUDE SQLDA2 is not supported for use with the PL/I precompiler in Oracle
Rdb Release 5.0 or higher.

There is no workaround. This problem will be fixed in a future version of Oracle Rdb.

5.1.61 SQL Pascal Precompiler Processes ARRAY OF
RECORD Declarations Incorrectly

The Pascal precompiler for SQL gives an incorrect %SQL−I−UNMATEND error when it parses a
declaration of an array of records. The precompiler does not associate the END statement with the
record definition, and the resulting confusion in host variable scoping causes a fatal error.

A workaround for the problem is to declare the record as a type and then define your array of that
type. For example:

 main.spa:

 program main (input,output);

 type
 exec sql include 'bad_def.pin'; !gives error
 exec sql include 'good_def.pin'; !ok
 var
 a : char;

 begin
 end.

−−−
 bad_def.pin

Oracle® Rdb for OpenVMS

5.1.60 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for PL/I in Oracle Rdb Release 5.0 or Higher132

 x_record = record
 y : char;
 variable_a: array [1..50] of record
 a_fld1 : char;
 b_fld2 : record;
 t : record
 v : integer;
 end;
 end;
 end;
 end;
 −−−

 good_def.pin

good_rec = record
 a_fld1 : char;
 b_fld2 : record
 t : record
 v: integer;
 end;
 end;
end;

 x_record = record
 y : char
 variable_a : array [1..50] of good_rec;
 end;

5.1.62 RMU Parallel Backup Command Not Supported for
Use with SLS

The RMU Parallel Backup command is not supported for use with the Storage Library System (SLS)
for OpenVMS.

Oracle® Rdb for OpenVMS

5.1.62 RMU Parallel Backup Command Not Supported for Use with SLS 133

5.2 Oracle CDD/Repository Restrictions
This section describes known problems and restrictions in Oracle CDD/Repository Release 7.0 and
earlier.

5.2.1 Oracle CDD/Repository Compatibility with Oracle Rdb
Features

Some Oracle Rdb features are not fully supported by all versions of Oracle CDD/Repository. Table
5−1 shows which versions of Oracle CDD/Repository support Oracle Rdb features and the extent of
support.

In Table 5−1, repository support for Oracle Rdb features can vary as follows:

Explicit support−−−The repository recognizes and integrates the feature, and you can use the
repository to manipulate the item.

♦

Implicit support−−−The repository recognizes and integrates the feature, but you cannot use
any repository interface to manipulate the item.

♦

Pass−through support−−−The repository does not recognize or integrate the feature, but
allows the Oracle Rdb operation to complete without aborting or overwriting metadata. With
pass−through support, a CDD−I−MBLRSYNINFO informational message may be returned.

♦

Table 5−1 Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum
Release of

Oracle Rdb

Minimum Release of
Oracle

CDD/Repository
Support

CASE, NULLIF, and COALESCE
expressions

6.0 6.1 Implicit

CAST function 4.1 7.0 Explicit

Character data types to support character
sets

4.2 6.1 Implicit

Collating sequences 3.1 6.1 Explicit

Constraints (PRIMARY KEY, UNIQUE,
NOT NULL, CHECK, FOREIGN KEY)

3.1 5.2 Explicit

CURRENT_DATE, CURRENT_TIME,
and CURRENT_TIMESTAMP functions

4.1 7.0 Explicit

CURRENT_USER, SESSION_USER,
SYSTEM_USER functions

6.0 7.0 Explicit

Date arithmetic 4.1 6.1 Pass−through

DATE ANSI, TIME, TIMESTAMP, and
INTERVAL data types

4.1 6.1 Explicit

Delimited identifiers 4.2 6.1¹ Explicit

External functions 6.0 6.1 Pass−through

External procedures 7.0 6.1 Pass−through

5.2 Oracle CDD/Repository Restrictions 134

EXTRACT, CHAR_LENGTH, and
OCTET_LENGTH functions

4.1 6.1 Explicit

GRANT/REVOKE privileges 4.0
5.0 accepts but does not
store information

Pass−through

Indexes 1.0 5.2 Explicit

INTEGRATE DOMAIN 6.1 6.1 Explicit

INTEGRATE TABLE 6.1 6.1 Explicit

Logical area thresholds for storage maps
and indexes

4.1 5.2 Pass−through

Multinational character set 3.1 4.0 Explicit

Multiversion environment (multiple Rdb
versions)

4.1 5.1 Explicit

NULL keyword 2.2 7.0 Explicit

Oracle7 compatibility functions, such as
CONCAT, CONVERT, DECODE, and
SYSDATE

7.0 7.0 Explicit

Outer joins, derived tables 6.0 7.0 Pass−through

Query outlines 6.0 6.1 Pass−through

Storage map definitions correctly restored3.0 5.1 Explicit

Stored functions 7.0 6.1 Pass−through

Stored procedures 6.0 6.1 Pass−through

SUBSTRING function 4.0
7.0 supports all features
5.0 supports all but 4.2
MIA features ²

Explicit

Temporary tables 7.0 6.1 Pass−through

Triggers 3.1 5.2 Pass−through

TRUNCATE TABLE 7.0 6.1 Pass−through

TRIM and POSITION functions 6.1 7.0 Explicit

UPPER, LOWER, TRANSLATE
functions

4.2 7.0 Explicit

USER function 2.2 7.0 Explict

¹The repository does not preserve the distinction between uppercase and lowercase identifiers. If you
use delimited identifiers with Oracle Rdb, the repository ensures that the record definition does not
include objects with names that are duplicates except for case.
²Multivendor Integration Architecture (MIA) features include the CHAR_LENGTH clause and the
TRANSLATE function.

5.2.2 Multischema Databases and CDD/Repository

You cannot use multischema databases with CDD/Repository and Oracle Rdb release 7.0 and earlier.
This problem will be corrected in a future release of Oracle Rdb.

Oracle® Rdb for OpenVMS

5.2.2 Multischema Databases and CDD/Repository 135

5.2.3 Interaction of Oracle CDD/Repository Release 5.1 and
Oracle RMU Privileges Access Control Lists

Oracle Rdb provides special Oracle RMU privileges that use the unused portion of the OpenVMS
access control list (ACL) to manage access to Oracle RMU operations.

You can use the RMU Set Privilege and RMU Show Privilege commands to set and show the Oracle
RMU privileges. The DCL SHOW ACL and DIRECTORY/ACL commands also show the added
access control information; however, these tools cannot translate the names defined by Oracle Rdb.

Note

The RMU Convert command propagates the database internal ACL to the root file
for access control entries (ACEs) that possess the SECURITY and DBADM
(ADMINISTRATOR) privileges.

Oracle CDD/Repository protects its repository (dictionary) by placing the CDD$SYSTEM rights
identifier on each file created within the anchor directory. CDD$SYSTEM is a special, reserved rights
identifier created by Oracle CDD/Repository.

When Oracle CDD/Repository executes the DEFINE REPOSITORY command, it adds (or augments)
an OpenVMS default ACL to the anchor directory. Typically, this ACL allows access to the
repository files for CDD$SYSTEM and denies access to everyone else. All files created in the anchor
directory inherit this default ACL, including the repository database.

Unfortunately, there is an interaction between the default ACL placed on the repository database by
Oracle CDD/Repository and the Oracle RMU privileges ACL processing.

Within the ACL on the repository database, the default access control entries (ACEs) that were
inherited from the anchor directory will precede the ACEs added by RMU Restore. As a result, the
CDD$SYSTEM identifier will not have any Oracle RMU privileges granted to it. Without these
privileges, if the user does not have the OpenVMS SYSPRV privilege enabled, Oracle RMU
operations, such as Convert and Restore, will not be allowed on the repository database.

The following problems may be observed by users who do not have the SYSPRV privilege enabled:

While executing a CDO DEFINE REPOSITORY or DEFINE DICTIONARY command:
If the CDD$TEMPLATEDB backup (.rbf) file was created by a previous version of
Oracle Rdb, the automatic RMU Convert operation that will be carried out on the .rbf
file will fail because SYSPRV privilege is required.

◊

If the CDD$TEMPLATEDB backup (.rbf) file was created by the current version of
Oracle Rdb, the restore of the repository database will fail because the default ACEs
that already existed on the repository file that was backed up will take precedence,
preventing RMU$CONVERT and RMU$RESTORE privileges from being granted to
CDD$SYSTEM or the user.

◊

If no CDD$TEMPLATEDB is available, the repository database will be created
without a template, inheriting the default ACL from the parent directory. The ACE
containing all the required Oracle RMU privileges will be added to the end of the
ACL; however, the preexisting default ACEs will prevent any Oracle RMU privilege

◊

♦

Oracle® Rdb for OpenVMS

5.2.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU Privileges Access Control Lists136

from being granted.
You must use the RMU Convert command to upgrade the database disk format to Oracle
Rdb after installing Release 7.0. This operation requires the SYSPRV privilege.
During the conversion, RMU Convert adds the ACE containing the Oracle RMU privileges at
the end of the ACL. Because the repository database already has the default Oracle
CDD/Repository ACL associated with it, the Oracle CDD/Repository ACL will take
precedence, preventing the granting of the Oracle RMU privileges.

♦

During a CDO MOVE REPOSITORY command, the Oracle RMU privilege checking may
prevent the move, as the RMU$COPY privilege has not been granted on the repository
database.

♦

When you execute the CDD template builder CDD_BUILD_TEMPLATE, the step involving
RMU Backup privilege has not been granted.

♦

Oracle CDD/Repository Releases 5.2 and higher correct this problem. A version of the Oracle
CDD/Repository software that corrects this problem and allows new repositories to be created using
Oracle Rdb is provided on the Oracle Rdb kit for use on OpenVMS VAX systems. See Section
5.2.3.1 for details.

5.2.3.1 Installing the Corrected CDDSHR Images

OpenVMS VAX Systems

Note

The following procedure must be carried out if you have installed or plan to install
Oracle Rdb and have already installed CDD/Repository Release 5.1 software on
your system.

Due to the enhanced security checking associated with Oracle RMU commands in Oracle Rdb on
OpenVMS VAX, existing CDDSHR images for CDD/Repository Release 5.1 must be upgraded to
ensure that the correct Oracle RMU privileges are applied to newly created or copied repository
databases.

Included in the Oracle Rdb for OpenVMS VAX distribution kit is a CDD upgraded image kit, called
CDDRDB042, that must be installed after you have installed the Oracle Rdb for OpenVMS VAX kit.

This upgrade kit should be installed by using VMSINSTAL. It automatically checks which version of
CDDSHR you have installed and replaces the existing CDDSHR.EXE with the corrected image file.
The existing CDDSHR.EXE will be renamed SYS$LIBRARY:OLD_CDDSHR.EXE.

The upgrade installation will also place a new CDD_BUILD_TEMPLATE.COM procedure in
SYS$LIBRARY for use with CDD/Repository V5.1.

Note

If you upgrade your repository to CDD/Repository V5.1 after you install Oracle
Rdb V7.0, you must install the corrected CDDSHR image again to ensure that the
correct CDDSHR images have been made available.

The CDD/Repository upgrade kit determines which version of CDD/Repository is

Oracle® Rdb for OpenVMS

5.2.3.1 Installing the Corrected CDDSHR Images 137

installed and replaces the existing CDDSHR.EXE with the appropriate version of
the corrected image.

5.2.3.2 CDD Conversion Procedure

OpenVMS VAX Systems

Oracle Rdb provides RDB$CONVERT_CDD$DATABASE.COM, a command procedure that both
corrects the anchor directory ACL and performs the RMU Convert operation. The command
procedure is located in SYS$LIBRARY.

Note

You must have SYSPRV enabled before you execute the procedure
RDB$CONVERT_CDD$DATABASE.COM because the procedure performs an
RMU Convert operation.

Use the procedure RDB$CONVERT_CDD$DATABASE.COM to process the anchor directory and
update the ACLs for both the directory and, if available, the repository database.

This procedure accepts one parameter: the name of the anchor directory that contains, or will contain,
the repository files. For example:

$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE [PROJECT.CDD_REP]

If many repositories exist on a system, you may want to create a DCL command procedure to locate
them, set the Oracle RMU privileges ACL, and convert the databases. Use DCL commands similar to
the following:

$ LOOP:
$ REP_SPEC = F$SEARCH("[000000...]CDD$DATABASE.RDB")
$ IF REP_SPEC .NES. ""
$ THEN
$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE −
 'F$PARSE(REP_SPEC,,,"DIRECTORY")'
$ GOTO LOOP
$ ENDIF

| Contents

Oracle® Rdb for OpenVMS

5.2.3.2 CDD Conversion Procedure 138

	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	November 2003
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.0.7.1
	1.1 Requirements
	1.2 Invoking VMSINSTAL
	1.3 Stopping the Installation
	1.4 After Installing Oracle Rdb
	1.5 Maximum OpenVMS Version Check Added
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.0.7.1
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 Recovery of Empty Optimized AIJ Does Not Update the Sequence Number
	2.1.2 Left Outer Join Query With OR Predicate Returns Wrong Results
	2.1.3 Left Outer Join Query With OR Predicate Returns Wrong Results
	2.1.4 Query Bugchecks When IN Clause Contains More Than Two DBKEYS
	2.1.5 Processes Loop at IPL2 When VLM Feature Used
	2.1.6 DBR Bugchecks at DBR$DDTM_RESOLVE + 000003F4
	2.1.7 Replication Option and LogMiner Features Active at the Same Time
	2.1.8 RMU /UNLOAD /AFTER_JOURNAL Created .RRD Content Clarification
	2.1.9 Page Locks Not Released When LOCKING IS PAGE LEVEL
	2.1.10 Looping or Bugchecks in DIO$FETCH_DBKEY for SORTED RANKED Indexes
	2.1.11 RMU/CLOSE/WAIT Hangs Waiting for ALS to Terminate
	2.1.12 Query With EXISTS Clause and COMPUTED BY Column Returns Wrong Results
	2.1.13 Bugcheck in DIO$FREE_CURRENT_LOCK for Sorted Ranked Indexes
	2.1.14 Ranked Index Overflow Node Corruption on Insert
	2.1.15 Illegal Page Count Error in the Dynamic Optimizer
	2.1.16 Bugcheck During Create Index with Mapping Values
	2.1.17 Error %RDMS-E-NOSOL_FOUND in Full Outer Join Query
	2.1.18 TRUNCATE TABLE and RMU /REPAIR Corruption Corrected
	2.1.19 UNION Query With Two Left Outer Joins in First Leg Returns Wrong Results
	2.1.20 Logical Area Record Erasure Count Not Updated for Cached Rows
	2.1.21 Query With Sum Function of Two Select Counts Bugchecks
	2.1.22 Left Outer Join Query With CONCAT Function Returns Wrong Results
	2.1.23 RCS Bugchecks at DIOCCH$UNMARK_GRIC_ENT
	2.1.24 Wrong Sort Order for Query with Aggregate, Group By, Order By
	2.1.25 Left Outer Join Query with SUBSTRING and CHAR_LENGTH Bugchecks
	2.1.26 Join Query with GROUP_BY/ORDER_BY Returns Wrong Order
	2.1.27 Query Joining Two Derived Tables of a View with UNION Overflows the Stack
	2.1.28 Query with Shared Expression in Two Predicates Returns Wrong Results
	2.1.29 Wrong Index Retrieval is Selected in Query with GTR Predicate
	2.1.30 Memory Corruption When Using Explicit 2PC
	2.1.31 Query Applying Zero Shortcut Returns Wrong Results

	2.2 SQL Errors Fixed
	2.2.1 Unexpected DATEEQLILL Error During IMPORT With CREATE INDEX or CREATE STORAGE MAP
	2.2.2 Incorrect Unit for the DETECTED ASYNC PREFETCH THRESHOLD Option
	2.2.3 DECLARE LOCAL TEMPORARY TABLE Limited to 10 Tables Per Session
	2.2.4 IVP or Other Failure with Dynamic SQL if SQL$INT is Installed /RESIDENT
	2.2.5 Bugcheck at PSIINDEX$FIND_ENTS_EXACT + 54
	2.2.6 Multistatement Procedures Used with Connections Resulted in %RDB-E-OBSOLETE_METADA Error Message
	2.2.7 IMPORT May Generate ACCVIO Exception During Import of a Module
	2.2.8 Unexpected ACCVIO When Reporting Incompatible Character Set Assignments
	2.2.9 SQL-F-NODBFILE When SQL Modules are Compiled With /CONNECT
	2.2.10 GET DIAGNOSTICS Keyword CONNECTION_NAME Returned Incorrect Value
	2.2.11 Errors Not Reported by SQL
	2.2.12 Variable Updated Though No Rows Found
	2.2.13 Partitioning Clause Not Working in Embedded SQL

	2.3 RDO and RDML Errors Fixed
	2.3.1 RDML /DATE_TYPE Qualifier Default is Now NOEMPTY_RECORDS

	2.4 Oracle RMU Errors Fixed
	2.4.1 RMU /COLLECT May Default to a READ WRITE Transaction
	2.4.2 RMU/VERIFY/CONSTRAINTS Problems With Named Tables And Constraints
	2.4.3 RMU Unload Incorrectly Using DBKEY SCOPE IS ATTACH

	2.5 LogMiner Errors Fixed
	2.5.1 LogMiner Elimination of Processing Unneeded AIJ Files
	2.5.2 /TRANSACTION_TYPE Qualifier for RMU /UNLOAD /AFTER_JOURNAL

	2.6 RMU Show Statistics Errors Fixed
	2.6.1 RMU /SHOW STATISTICS Writes Invalid Configuration File

	2.7 Hot Standby Errors Fixed
	2.7.1 Starting LRS on Master Database Caused Shutdown

	Chapter 3Enhancements
	3.1 Enhancements Provided in Oracle Rdb Release 7.0.7.1
	3.1.1 RDM$BIND_SNAP_QUIET_POINT Logical No Longer Used
	3.1.2 Determining Which Oracle Rdb Options Are Installed
	3.1.3 New Procedure RDB$IMAGE_VERSIONS.COM

	Chapter 4Documentation Corrections
	4.1 Documentation Corrections
	4.1.1 Waiting for Client Lock Message
	4.1.2 Clarification of PREPARE Statement Behavior
	4.1.3 SQL EXPORT Does Not Save Some Database Attributes
	4.1.4 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter
	4.1.5 New Request Options for RDO, RDBPRE and RDB$INTERPRET
	4.1.6 Missing Descriptions of RDB$FLAGS from HELP File
	4.1.7 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database
	4.1.8 Clarification of SET FLAGS Option DATABASE_PARAMETERS
	4.1.9 Additional Information About Detached Processes
	4.1.10 The Halloween Problem
	4.1.11 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
	4.1.12 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector Clarification
	4.1.13 Location of Host Source File Generated by the SQL Precompilers
	4.1.14 Suggestion to Increase GH_RSRVPGCNT Removed
	4.1.15 Clarification of the DDLDONOTMIX Error Message
	4.1.16 Compressed Sorted Index Entry Stored in Incorrect Storage Area
	4.1.17 Partition Clause is Optional on CREATE STORAGE MAP
	4.1.18 Oracle Rdb Logical Names
	4.1.19 Documentation Error in Oracle Rdb Guide to Database Performance and Tuning
	4.1.20 SET FLAGS Option IGNORE_OUTLINE Not Available
	4.1.21 SET FLAGS Option INTERNALS Not Described
	4.1.22 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS
	4.1.23 Documentation for Defining the RDBSERVER Logical Name
	4.1.24 Undocumented SET Commands and Language Options
	4.1.24.1 QUIET COMMIT Option
	4.1.24.2 COMPOUND TRANSACTIONS Option

	4.1.25 Undocumented Size Limit for Indexes with Keys Using Collating Sequences
	4.1.26 Changes to RMU/REPLICATE AFTER/BUFFERS Command
	4.1.27 Change in the Way RDMAIJ Server is Set Up in UCX
	4.1.28 CREATE INDEX Supported for Hot Standby
	4.1.29 Dynamic OR Optimization Formats

	Chapter 5Known Problems and Restrictions
	5.1 Oracle Rdb Considerations
	5.1.1 AIJ Log Server Process May Loop Or Bugcheck
	5.1.2 Optimization of Check Constraints
	5.1.3 Dynamic Optimization Estimation Incorrect for Ranked Indices
	5.1.4 Running Rdb Applications With the VMS Heap Analyzer
	5.1.5 RMU/RECOVER/AREA Needs Area List
	5.1.6 PAGE TRANSFER VIA MEMORY Disabled
	5.1.7 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors
	5.1.8 Behavior Change in 'With System Logical_Name Translation' Clause
	5.1.9 Carry-Over Locks and NOWAIT Transactions Clarification
	5.1.10 Strict Partitioning May Scan Extra Partitions
	5.1.11 Exclusive Access Transactions May Deadlock With RCS Process
	5.1.12 Oracle Rdb and OpenVMS ODS-5 Volumes
	5.1.13 Clarification of the USER Impersonation Provided by the Oracle Rdb Server
	5.1.14 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition Map
	5.1.15 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME
	5.1.16 Application and Oracle Rdb Both Using SYS$HIBER
	5.1.17 IMPORT Unable to Import Some View Definitions
	5.1.18 AIJSERVER Privileges
	5.1.19 Lock Remastering and Hot Standby
	5.1.20 RDB_SETUP Privilege Error
	5.1.21 Starting Hot Standby on Restored Standby Database May Corrupt Database
	5.1.22 Restriction on Compound Statement Nesting Levels
	5.1.23 Back Up All AIJ Journals Before Performing a Hot Standby Switchover Operation
	5.1.24 Concurrent DDL and Read-Only Transaction on the Same Table Not Compatible
	5.1.25 Oracle Rdb and the SRM_CHECK Tool
	5.1.26 Oracle RMU Checksum_Verification Qualifier
	5.1.27 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL (Alpha)
	5.1.28 Restriction on Using /NOONLINE with Hot Standby
	5.1.29 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error
	5.1.30 DBAPack for Windows 3.1 is Deprecated
	5.1.31 Determining Mode for SQL Non-Stored Procedures
	5.1.32 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE Error
	5.1.33 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
	5.1.34 Interruptions Possible when Using Multistatement or Stored Procedures
	5.1.35 Row Cache Not Allowed on Standby Database While Hot Standby Replication Is Active
	5.1.36 Hot Standby Replication Waits when Starting if Read-Only Transactions Running
	5.1.37 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle Functions Script
	5.1.38 DEC C and Use of the /STANDARD Switch
	5.1.39 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb Sorts
	5.1.40 Performance Monitor Column Mislabeled
	5.1.41 Restriction Using Backup Files Created Later than Oracle Rdb Release 7.0.1
	5.1.42 RMU Backup Operations and Tape Drive Types
	5.1.43 Use of Oracle Rdb from Shared Images
	5.1.44 Restriction Added for CREATE STORAGE MAP on Table with Data
	5.1.45 Oracle Rdb Workload Collection Can Stop Hot Standby Replication
	5.1.46 RMU Convert Command and System Tables
	5.1.47 Converting Single-File Databases
	5.1.48 Restriction when Adding Storage Areas with Users Attached to Database
	5.1.49 Support for Single-File Databases to be Dropped in a Future Release
	5.1.50 DECdtm Log Stalls
	5.1.51 Cannot Run Distributed Transactions on Systems with DECnet/OSI and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0
	5.1.52 Multiblock Page Writes May Require Restore Operation
	5.1.53 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application
	5.1.54 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area
	5.1.55 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	5.1.56 Different Methods of Limiting Returned Rows from Queries
	5.1.57 Suggestions for Optimal Usage of the SHARED DATA DEFINITION Clause for Parallel Index Creation
	5.1.58 Side Effect when Calling Stored Routines
	5.1.59 Considerations when Using Holdable Cursors
	5.1.60 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for PL/I in Oracle Rdb Release 5.0 or Higher
	5.1.61 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations Incorrectly
	5.1.62 RMU Parallel Backup Command Not Supported for Use with SLS

	5.2 Oracle CDD/Repository Restrictions
	5.2.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features
	5.2.2 Multischema Databases and CDD/Repository
	5.2.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU Privileges Access Control Lists
	5.2.3.1 Installing the Corrected CDDSHR Images
	5.2.3.2 CDD Conversion Procedure

